
Around 1950, computers learned how to sort numbers
and words. Immediately, many questions arose. What
could be done with such a machine? How should its
space be set up and governed?
Moving the world into the computer meant rethinking
many things. Bank transactions, spa guests, and
terrorists, to name but a few, had to be “formatted” so
that they could be dealt with in the machine. In doing
so, managers, programmers, and users created a digital
world that offered new ways of classifying things and
organizing complex relations. Some people even linked
machines, combined data, and shared programs. And
computers designed to sort personnel unexpectedly
became personal computers. This elegant essay explores
how and why.

David Gugerli is professor of the history of technology
at ETH Zurich. His many contributions to the history of
computing include, most recently, Simulation for All:
The Politics of Supercomputing in Stuttgart, published
with Ricky Wichum.

9 783034 016711

ISBN 978-3-0340-1671-1

H
ow

 the W
orld Got into the Com

puter
David Gugerli

David Gugerli

The Emergence of
 Digital Reality

W RLD
How the

Got into the Computer

Gugerli How the World 3T Druck.indd Alle Seiten 20.01.22 11:56

David Gugerli

HOW THE WORLD GOT

INTO THE COMPUTER:

THE EMERGENCE OF

DIGITAL REALITY

Translated by Giselle Weiss

German Edition:
Wie die Welt in den Computer kam.
Zur Entstehung digitaler Wirklichkeit.
S. Fischer, Frankfurt am Main 2018.
ISBN 978-3-10-397226-9

Cover image: see p. 51
Cover design: Thea Sautter, Zurich
© 2022 Chronos Verlag, Zurich
ISBN 978-3-0340-1671-1
E-Book (PDF): DOI 10.33057/chronos.1671

5

Contents

1	 Switching on	 9

2 	 Computing, programming, and formatting	 19

3	 Sharing and operating	 55

4	 Synchronizing	 79

5	 Production and setting up	 91

6	 Connecting, differentiating, and storing	 119

7	 Switching off	 165

Acknowledgments	 171

Postscript	 173

Photo credits	 174

Notes	 175

Bibliography	 189

03 02 09 	 CC	 Hey, Jim, you do have your computer ON, don’t 	
you?

03 02 13 	 C	 Negative. I don’t have it ON. Do you want it ON at
this time?

[…]
03 02 43 	 C	 Computer light is on. We’re ready.
03 02 45 	 CC	 Say again, Jim.
03 02 47 	 C	 I say, my computer light is on. We’re ready.

Voice tape transcription between the ground station (CC) and astro-
naut (C) during the Gemini 4 Mission, NASA 1965, p. 26.

9

1	 Switching on

This is the story of how the world came to inhabit the computer.
It is the tale of a major relocation that began seven decades ago,
around 1950. For a variety of reasons, efforts to shape a comput-
er-based reality have been ongoing since then – amounting to
millions of “man-years,” in industry parlance.1 Today, people refer
to the near-total computerization of the world as if it were noth-
ing. Yet the effort to “put the world into computers,” as technology
historian Michael S. Mahoney wrote, was a long, labor-intensive,
and sometimes frustrating undertaking.2

How did the world get into the computer? The answer is not to
be found in the mix of brilliant pioneering work, entrepreneurial
risk taking, coherent genealogies, and exponential growth curves
typically trotted out in computer histories. In fact, given the
hard work, ambitious project planning, often naïve designs, the
anxious wait for program updates, decades of anticipating new
hires and new software, as well as the huge effort of developing
computerized routines, the story of how digital reality emerged
simply cannot begin with the haphazard nature of technological
progress or even the machines themselves. Instead of lamenting
the victims of computers and blaming the machines for causing
“reading and attention disorders, anxiety and dullness, sleep dis-
orders and depression, obesity, propensity to violence, and social
decline,”3 we should focus on what computer developers were
thinking and the hopes and dreams of users.

Chance and victimization are poor guides for a good computer
history. I would like to take a different approach, which is to explore
how people perceived computer-related issues at the time and how
they dealt with those issues. I will trace the expectations, mindsets,

10

and motives of individuals who worked on, directed, or supported
this massive shift as technicians, managers, users, entrepreneurs,
and civil servants. All were betting on the expanded design possibil-
ities, the potential for analysis, and the acceleration of things in dig-
ital space and thus were willing to accept the bumps in the road for
themselves and others. But not all of them did it in the same way.
Thus, I will tell how the computer has been harnessed for different
purposes. What prompted opening up the new space of action, and
what challenges did it pose? How did the shift occur from the old
registries to the unfamiliar databases, from broadcasting to the
World Wide Web, from the floor of the stock exchange to comput-
erized stock trading, and from the roulette tables of casinos to the
sophisticated profitability of online games?

The question of how the world got into the computer com-
pels you to think. With a little luck and critical perseverance, you
might even come up with an answer. In any case, the sources for
this history – the hundreds of thousands of lectures, discussion
papers, and articles produced on the subject in the first half-cen-
tury of computer history – are easily accessible.4 Time and again
these materials sparked new ideas and deliberation on promising
courses of action. Essays, announcements, and progress reports
furnish information on how the new digital space was to be con-
figured and which rules were developed, tested, and ultimately
discarded or implemented. What could reasonably be expected
had to be communicated through lectures and articles, strategy
papers, announcements, and debates. The record of this work is
my inspiration. It tells of successful and failed exchanges in the
dynamic project culture that has been part and parcel of the com-
puter world. Contemporaries read these sources as a travel guide.
Today, too, they help to navigate the digital space of that time.

The history of computing thus observes observations, and
in doing so constitutes a synthesized, concentrated account of a

11

large number of contemporary accounts. Neither circuit board
processors nor characters on long-dead screens, neither data sets
nor programs, neither users nor operators can be historically
comprehended other than through a critical reading of their com-
mentaries preserved in archives or on the Web. Only rarely have
I consulted memoirs or interviews with the dramatis personae
of computer history.5 They are generally more interested in ex-
plaining their own farsighted decisions than in tracing the course
of history. They acknowledge a past with limited horizons (not
theirs, of course) and compare it with an ungrateful or ignorant
present. In doing so, they forget that the reduction of uncertainty
is an inexact science and that the path to wisdom is rarely straight.

This is basically another way of saying what my history of the
computer takes into account and what I wish to disregard. I rely
heavily on the extensive holdings of the Association for Comput-
ing Machinery, because they provide very detailed information
about motivations for shifting things into computers.6

The process of communication comprised both discreet and
overt announcements, long and short explanations, big promises
and little promises, both from within and outside the self-pro-
claimed group of experts. In the first promotional film in digital
history around 1951, for instance, computer manufacturer Rem-
ington Rand held out the sort of promise that could easily find
resonance today.7 Like any advert, this one broadcast an upbeat
message and, at its most superficial level, conveyed unbridled
optimism at the progress made by civilization and technology.
The recently founded company created a suitably impressive
backdrop for the cinematic debut of its all-purpose computer.
From the pyramids to urban skyscrapers, from the triumphs of
scientific research to the mass production enabled by automated
industrial plants, to the services of modern forms of govern-
ment – the ensemble of spoken words and images served to evoke

12

the foundations and achievements, and the history and future of
humankind. The arrival of UNIVAC overshadowed prior progress,
and put it on a new footing: from now on, the entire world theater
would benefit from the computing skills of the machine. UNIVAC,
the first commercial digital computer ever, had freed itself of the
main tasks of previous computing machines, which had consisted
of calculating ballistic curves, cryptography, and the development
of nuclear weapons of mass destruction.8

The Remington Rand promotional film presented the com-
puter as the crowning achievement of civilization’s development
and, at the same time, as its instrument. The film explained in de-
tail the various components, procedures, and possible uses of the
computer, including coding stations, punched card readers, mag-
netic tapes, monitoring consoles, processors, memory “tanks” and
printers – all surrounded by a scattering of humans. Mention was
made of the amazingly fast solving of complex systems of equa-
tions in nuclear physics, but the focus was on the bureaucratic
mass processing of data on the digital assembly line.

Particular emphasis was placed on the meticulous program-
mers and skilled operators who managed the machine. The
computer was an automated, industrial, well-controlled calcu-
lating monster in the service of humankind. It came across as a
smoothly functioning manufacturing system, fed with raw data
that went through a whole series of processing steps and emerged
as fully calculated and neatly printed results. These results might
be thousands of payroll checks for a large company with deduc-
tions for taxes, social security, and union dues as well as individ-
ual adjustments for overtime, vacations, and night shifts all fig-
ured in. “In less than four hours per week, and with only a small
operating staff, UNIVAC can complete the computation for this
payroll of 15,000 employees. A saving in time and money that is
tremendous.”9

13

The capability of the system beggared credulity. It could han-
dle “any task where data have to be processed or problems solved,”
making it clear that “tomorrow’s office production will attain the
high levels of speed and efficiency which mark industrial pro-
duction facilities today.”10 The printer, for example, could print
out a full three pages of a metropolitan telephone directory with
names, addresses, and telephone numbers in less than one min-
ute. Moreover (and this was the real kicker of the marketing film),
“UNIVAC still has nearly 90% of its working week free to perform
many other valuable computing assignments.”11

With that, the film upended the relationship between the
world and the computer, and also communicated something else
with far-reaching consequences. Suddenly, the key message was
no longer the grand unveiling of the new machine and its poten-
tial spread throughout the world. Rather, the message was that the
computer offered uncharted territory to exploit.

The “all-purpose” computer had space – lots of space, ac-
tually. UNIVAC’s space was so immense that it could accommo-
date all kinds of projects. Indeed, “the whole world” (or, at least,
everything relevant to the world) would one day come to occupy
this technologically generated, recently conquered, but still min-
imally structured digital space. A poster from that time depicts a
Remington Rand computer commissioned by US Steel encircling
the world and drawing it into its state-of-the-art computer room.

Inviting the world into the computer room had the effect of
populating the computer with data, for example, from the most
recent US census. From a computational point of view, the analy-
sis was not a difficult task, but it was an extremely laborious one.
The results of the previous census in 1940 were still being tallied
when UNIVAC made its appearance. Yet the new machine handled
the processing of the even more comprehensive 1950 census with
ease and delivered the first results within a few weeks.12

14

Thus, it made perfect sense to enter the census data into
UNIVAC. There even was an IT precedent for doing so. In 1890,
Hermann Hollerith had supplied the Census Bureau with his
electromechanical punched card machines, making it possible

Figure 1: The world of US Steel moves to UNIVAC in 1956.

15

to calculate the results of the 1890 census in under a year. In con-
trast, analysis of the 1880 census had required an additional eight
years.13

The UNIVAC was also entrusted with tallying the 1952 US
presidential election. During a CBS news broadcast, the computer
projected victory for Second World War hero and Republican can-
didate General Dwight D. Eisenhower. What made the event so
spectacular was not only the remarkably fast computing power of
the machine but also that it foresaw the defeat of Democrat Adlai
Stevenson, who had been favored to win.14

The world (or much of it) was also gravitating toward the com-
puter for making faster weather predictions. Data from guided
weather rockets and weather stations – “all of this can be fed into
the computer through these magnetic tapes,” explained the host
of another Remington Rand15 commercial, gesturing to banks of
tapes lined up like trusty servants.16

Figure 2: UNIVAC sorting Democrats, Republi-
cans, and undecideds during the 1956 presi-
dential election.

16

The arrival of the computer was thus accompanied by a grand
narrative. This narrative had to be told over and over by everyone
involved both to help grasp events as they unfolded and to help
endure the arduous work ahead. My account of this effort also re-
lies on storytelling. Not because there are no analytical concepts
to explain. I am compelled to tell stories because it is stories told
in the past that moved the world (into the computer).

This narrative history is organized by the basic activities that
shaped digital space and made it a reality. These activities include
computing, programming, and formatting (Chapter 2). They make
a good starting point because they figured particularly largely in
the 1950s, and continued to remain important afterward. In the
early 1960s, people began to formulate rules for sharing scarce re-
sources and thus also rules for operating in digital space, that is,
time-sharing and operating systems (Chapter 3). Around the same
time, the issue of synchronizing the world with digital space be-
came acute, as the example of the Houston Space Center (Chapter
4) shows. Indeed, the delicate matching of IT supply and demand
runs like a thread through the history of the computer. Bring-
ing the two together required endless negotiation. While man-
ufacturers worked on the machines and programs of tomorrow,
customers sought to clarify what it was that they actually wanted
to do in digital space and how to go about it. Projects of varying
scope provided a means of adapting customer expectations to the
possibilities of digital space (Chapter 5). By the 1990s, networks
of computers, differentiation of users, and routine storage of data
had served to structure digital space in such a way as to produce a
globally recognized digital order. Ever since then, the world’s com-
munications and transactions have found firm anchor – albeit in
rapidly changing configurations – in digital reality (Chapter 6).

The form of this story is an essay. What happens when the
usual perspective of computer history is reversed? Do new in-

17

sights emerge? What can simply be left out of the conventional
narratives and what should receive greater emphasis? For me,
there is a clear advantage to this exercise. By beginning with con-
temporary problems whose solutions had to be negotiated and
whose implementation invariably led to new, unintended con-
sequences, it is possible to recount computer history in such a
way that its outcome need not be regarded as inevitable. And that
matters if we are to understand why the world – even in the com-
puter – is always subject to reinterpretation.

19

2 	 Computing, programming,
	 and formatting

When Remington Rand introduced UNIVAC in 1951, nobody really
knew what to expect from a computer. People generally assumed
that it could calculate quickly. But experience with the inner work-
ings of mechanical calculating machines had shown that even
slow machine computing using only the four basic arithmetical
operations could be a complicated affair. When well maintained,
the confusing jumble of wheels, cams, rods, levers, and springs
hidden away under the cover of a Brunsviga or Adler calculator
could handle tens carries with ease. But the engineering could
not easily be reconstructed with electronic circuits.17 So how was
such a machine supposed to go faster? No doubt there were spe-
cialists in mechanical calculators and in computational tasks who
had some inkling of what a computer might one day be able to do.
Surely a few had heard of the Turing machine or read John von
Neumann.18 But even they most likely had never seen a computer,
let alone operated one. What they could do was to eagerly read,
with wonder or skepticism, accounts by colleagues who knew
something of the new world of computers. These accounts, for all
their genuine optimism, made one thing abundantly clear: even
the people who built computers could not agree on the essential
features of the machines.19

Under such circumstances, what could be expected of an elec-
tronic calculating machine that supposedly not only computed
automatically and accurately but that also served any purpose?
Even practical engineers and managers fell under the spell of the
UNIVAC spot.20 Moreover, as the film moved from frame to frame,
and from one explanation to the next, the viewer’s amazement

20

increased. UNIVAC was said to process text and numerical data
at “incredible speeds.” The masses of data this “miracle of [mod-
ern] electronics” could process were simply unimaginable. What
would have taken years to do in the past could now be done in
minutes.

It is the business of advertising to exaggerate. Its purpose,
after all, is to cater to dreams, awaken desires, stoke longing, and
bring unanticipated possibilities within reach if only for a brief
moment. Advertising achieves these feats by surprise, especially
when an inspirational commercial spotlights an aspirational
computer. In the case of UNIVAC, the surprise was that there
was hardly any talk of computing. The film obviously made clear
what it means to be able to process payroll checks for ten thou-
sand employees. But it was precisely this tedious, boring process,
repeated at monthly or biweekly intervals, that UNIVAC could
apparently do in no time at all. So quickly, in fact, that it could
not even be demonstrated. Indeed, the process of computation
was never shown but only implied in mention of the result –
“adjustments and rates calculated” (note the past participle). A
thrilling vision of a printer spitting out paychecks flashed by on
the screen. Computation itself could not be visualized. It lurked
unseen in the black box of the machine. The presenter merely
spoke tautologically of “computing systems” that performed and
delivered “computations.”

Although calculations were described as a result, not a pro-
cess, and as a miraculous transformation, not a detailed process,
they did occupy a specific place. Indeed, the camera allowed view-
ers a brief glimpse inside UNIVAC’s central cabinet, stuffed with
electron tubes, and then of its monster memory.

Even the points in the data processing sequence where calcu-
lation was involved were described rather than shown. The claim
made at the beginning of the commercial was that the machine

21

could be used for any task that required “sorting, classifying, com-
puting, and decision-making.”21 Thus, in procedural terms, com-
puting ranked third. The computer was initially an apparatus for
sorting and classifying data, that is, an ordinateur – and not only in
France (more about that later).

Moreover, although pretty much relegated to sorting, com-
puting became nearly ubiquitous in the processing sequence. This
was because each of the four sub-procedures enumerated in the
UNIVAC spot (sorting, classifying, computing, and decision-mak-
ing) comprised aspects of each other. Sorting, for instance, in-
volved making computable, criteria-based decisions. Classifying
similarly entailed decisions based on size, characteristics, output,
and type. Computing involved overwriting data in the well-or-
dered space of numbers in such a way as to enable a correct result
to be determined. Ultimately, however, decision-making could only
proceed once the sorted and classified data had been computed.

UNIVAC’s programming capacity depended on two operational
functions. First, the sequence for sorting, classifying, computing,

Figure 3: UNIVAC’s run-time memory
around 1955.

22

and decision-making had to be established by a verifiable set of
instructions. In other words, the sequence had to be programmed.
Second, everything that was to be sorted, classified, computed,
and decided on had to be prepared in a suitable format beforehand.
Only then could it be read by a machine, and only then could the
machine print the final result of the combination of instructions
of data or pass it to the next procedure. Formatting was the most
important prerequisite for successful program-based computing.

The bracketing of the processing sequence by programming
and formatting could be interpreted as the growing importance of
these activities, the mechanical work of sorting having given rise
to the possibility of conscious decision-making. But, even more
radically, the sequence of processes also represented the scope of
everything a computer could do.

Computing

If the most powerful of computers could make the process of
computing disappear, you might ask where it was before it dis-
appeared. How was computing done in the 1950, before UNIVAC?
Where was computing commonplace, and how was its arsenal
equipped? The scope of computing in commerce, insurance, ma-
chine shops, artillery, and surveying was extremely varied, as a
few examples show very well.

In the retail trade, salespeople, accountants, managers, and
warehouse supervisors computed every day. But they had very
different expectations with regard to accuracy. Computing to
estimate – a definite no-go in accounting – was the rule in sales.
Depending on the situation, percentages, margins, production
runs, and volume discounts were sometimes computed with as-
tonishing precision, sometimes jotted down on the back of an

23

envelope, sometimes recorded with notes for double-checking,
and sometimes thoroughly detailed on paper. In any case, situa-
tion-specific, usually approximate calculations were a characteris-
tic feature of transactions. There was no other way to do business.
Precise, verifiable computation occurred later when invoicing and
in the books. Consequently, in retail, computational rigor could
be postponed to some extent until after delivery and delegated to
specialists in the accounts office. Banks issued exact calculations
of interest at the end of the year, using bulky interest rate ledg-
ers. Stock traders would head for the local bank at the end of their
daily trading session to compute their position. Thus, calculation
problems were temporized wherever possible.

Even in the computation-intensive insurance business, the
focus was on delaying computation. The risky calculation of dis-
tributed risk was spread over a company’s entire organization. In
the process, there was always something that had to be calculated
in advance or recalculated at various points. Insurance agents had
to perform calculations under time pressure during customer vis-
its; in the branch offices, it was more a matter of compiling, sort-
ing, and customizing offers. The head office of an insurance com-
pany, where the accounting, billing, and claims departments were
located, made their own calculations and at different speeds than
the actuaries and statisticians, investment advisors, or claims
managers. Insurance agents, for example, were able to read off the
key values of their quotations from a precalculated rate manual
and thus to adjust even complicated, particularly high-risk poli-
cies to a specific insurance situation on the spot with little com-
putational effort.22

Machine shops, in contrast, relied only in part on temporiza-
tion and distribution, and avoided calculation whenever possible.
Here, probably contrary to the assertions of business economists,
exact computation did not necessarily go hand in hand with more

24

efficient production or a better product. The hasty application
of accounting catechism was countered by a skeptical attitude
toward overprecision based on experience. Certainly the cost of
lacquering a piece of furniture could be fairly precisely calculated
in the carpenter’s shop. But with a little practice, it could also eas-
ily be estimated and then determined after the work was done by
counting the paint cans used. The arithmetic taught in vocational
schools did have its niceties. Nonetheless, some of the textbook
assignments may have been more about building confidence for
the final apprenticeship exam than about encouraging computa-
tion. Such assignments included, for example, determining the
cost of one meter of putty rabbet in the manufacture of windows.
In a chapter on the “purchase and consumption of auxiliary ma-
terials,” this assignment was among the most difficult. After solv-
ing it, students would likely have sworn off calculating forever in
favor of the industry-standard rule of thumb. That would require
simply setting the cost per meter of putty rabbet (like the cost of
paste, pencils, and glass paper per square meter of wood) a little
higher than the instructor had done in his time.23

Determining the adjustment angle of a lathe in a metalwork-
ing shop was a different story. Estimation and experience alone
were insufficient to produce a cone with the desired pitch. Con-
sequently, mechanics were expected to calculate more and even
better than carpenters. A mechanic’s training in vocational school
included detailed explanations of how to calculate the tool set-
ting using a combination of geometric sketch, taper formula,
and tangent of the lead angle. Nonetheless, obviously aware of
his student’s moderate zeal for arithmetic and for safety’s sake,
Alfred Stahel appended to his 1950 textbook Rechnen für Mechani-
ker (Computation for mechanics) a table showing the cone angle
(already halved) in degrees and the percentage pitch. As if doubt-
ing the effectiveness of his arithmetic lessons in general, he also

25

supplied a table of “squares, square roots, and circumferences and
areas of circles.”24

Time and relative speed played a very important role in any
calculation, whether on the shop floor or the stock exchange or in
times of war. But the time factor did not have the same urgency in
every situation that called for calculation, nor was it always han-
dled the same way. For example, in setting up artillery, precious
time was saved by use of firing and correction tables prepared by
weapons control, which transmitted to the gunners over a loud-
speaker the target coordinates based on corrected tables for the
fire plan.25 Even faster, though mechanically very demanding, was
the use of command devices in air defense.26 Here, complex and
costly calculations were replaced by mechanically and telescopi-
cally supported precision tracking of an aircraft’s trajectory. The
values to be set on the guns before firing could commence had
to be mechanically translated by entering observable conditions
onto their dials. The “calculation” was mechanically built into the
command device. This saved computing time and enabled quick
decisions to be made at the guns for the trajectory of the shells.27

Calculations could be done mechanically, they could be
avoided by using rules of thumb, they could be kept in tabular
or graphical form, or they could simply be postponed until later.
There was considerable potential for optimization if, under the
right circumstances, precision calculations were adjusted and im-
plemented with the benefit of intuition, experience, and trust in
the authority of tables. When mental arithmetic and paper calcu-
lations no longer sufficed, the arithmetic space could be mechan-
ically expanded by automatic calculating machines, recording
machines, and other analog computers. In most cases, however, a
person could make do with a slide rule equipped with appropriate
scales.28 Among the arsenal of mechanical, tabular, and graphical
tools that aided arithmetic around 1950, the slide rule was hard

26

to beat as a fast, portable, yet remarkably precise device for de-
manding calculations. Even in the mid-1960s, in the technically
sophisticated setting of NASA’s Mission Control Center where
the Gemini and Apollo space flights were monitored, technicians
seated at the consoles were still using slide rules to quickly check
how much fuel was left in the rocket or the position of the space-
craft.29 Day in and day out, merchants, insurers, craftsmen, and
artillerymen calculated away, comparing graphical aids against
measuring instruments, formulas against table values, and esti-
mates against their own computations. There were, around 1950,
an infinite number of situations in which it was possible to do lots
of complex calculations accurately, quickly, and safely, or at least
efficiently, and with little difficulty. A large battery of tools was
available for carrying out extensive or time-critical calculations
and for doing calculations in advance.

In other words, there was no obvious demand for a “miracle
of electronics” that could compute at top speed. The demand first
had to be created, defined, and recognized. The fact that it actually
materialized over the course of the following decades was more
projection than certainty around 1950. A machine that could be
used to perform routine computing operations at great profit was
indeed a miraculous machine.

Some of the mind-boggling mathematics that scientists had
come up with to that point was now done by electromechanical
computers. Such systems had been built, for example, in the 1920s
and 1930s at the Massachusetts Institute of Technology (MIT) un-
der the direction of Vannevar Bush and between 1939 and 1944 at
Harvard University under the direction of Howard Aiken.30 These
systems had been used, among other things, to calculate the crit-
ical mass of an atomic bomb in a short amount of time, that is,
before the end of the Second World War. The Electronic Numeri-
cal Integrator And Computer (ENIAC), built by John Mauchly and

27

Presper Eckert on behalf of the US Army at the Moore School of
Electrical Engineering at the University of Pennsylvania, was also
oriented to the problems of scientific and military computing.31
These machines were designed to numerically solve differential
equations, for instance, that is, to mechanize the extensive calcu-
lation work of such tasks. Or, like the ENIAC, they were used to
solve problems of optimization or stochastics in addition to their
tasks in the military and nuclear realm. Electromechanical ma-
chines, which were used for administrative purposes and could
reliably master even large sets of positive numbers with three to
four basic arithmetic operations, were a different order of ma-
chine.32 The possibility space envisioned by scientific computing
dealt with atomic bombs, not setting angles, premium invoicing,
accounts receivable, or the cost of putty rabbet.

Figure 4: Calculation could not be avoided completely – even for a
flight navigator inside a Swissair plane (1959).

28

Interest in computation among academics took many differ-
ent directions. For example, in addition to his theoretical work
on the computability of the decision problem and his secret
work on computational decryption, Alan Turing attempted to
computationally determine the processes of evolution and bio-
chemical structure formation.33 John von Neumann, writing in
1945, fancied rather an automatic computing system that could
carry out computations of high complexity. The arithmetical
problems he had in mind went far beyond what Bush and his
colleagues at MIT could solve mechanically – off-the-wall things
such “solv[ing] a non-linear partial differential equation in 2
or 3 independent variables numerically.”34 Konrad Zuse, for his
part, had believed in 1942 that his computer should be used to
calculate matrices. He then entertained the chilling prospect
of applying this abstract notion from the field of linear algebra
to research on race and genetics, popular topics in his milieu.
With adequate support from the National Socialist state, Zuse
figured that his machine could be used to determine the degree
of kinship between any two individuals – a computational tool
fit for the Nuremberg Laws. Not surprisingly, by 1948 Zuse was
envisioning a much broader range of possible applications for
his computer. These ranged from mathematical systems and
checking of Boolean logic to designing high-performance nu-
merical calculation devices to atomic physics and computational
chemistry, and from bookkeeping, job costing, and other types
of commercial computing to applications for design problems,
calculator-aided design tools, civil engineering, circuitry, chess,
and even problems in linguistics.35

These computer applications were future oriented, but they
did have one thing in common with UNIVAC’s own past in the
history of the technology, independent of political context. Zuse’s
applications were intended to enable a selective shift of scientific

29

problems to the computer and, in return, to mechanize comput-
ing in such a way as to avoid its tribulations, if not computing it-
self. Automating and speeding up arithmetical operations would
thus go a long way toward achieving this goal.

Separating computing staff from computing was one thing.
Separating the debate over computers from computing and its
electronic implementation was something else again. The lat-
ter, in particular, seems to have prompted Presper Eckert, James
Weiner, Frazer Welsch, and Herbert Mitchell, all engineers at the
Eckert-Mauchly Computer Division of Remington Rand, to give a
detailed talk on UNIVAC in New York in December 1951. The speak-
ers did not ignore the subject, as the commercial did, but rather
went right to the point, showing how the machine could be used
to compute. Perhaps they hoped that they could then go on to talk
about genuinely interesting matters. The occasion was the joint
conference of the American Institute of Electrical Engineers and
the Institute of Radio Engineers. The Remington Rand delegation
served as ambassadors for a complex development project that
had involved hundreds of engineers.

Eckert and his colleagues had chosen an unusual approach to
their four-part presentation.36 For starters, they said, their purpose
was not to talk about performance or objectives, but rather how
the UNIVAC system was organized. Functions independent of the
main computer were outsourced to auxiliary components with
their own power supply. That included, for example, keyboard
to magnetic tape and punched card to magnetic tape operations.
Data entering or leaving the computer were synchronized via
special input–output circuits. The computer was equipped with a
high-speed bus amplifier through which all data passed at a fixed
rate, like packages on an assembly line, “during transfer between
any arithmetic register and the main memory or between the
main memory and the input–output registers.”

30

Following this brief but critical structural point, the present-
ers turned to a complex block diagram of UNIVAC’s interior. Do-
ing so required them to rely on the momentum they had gained
to explain digital computing one last time, as such explanations
were to disappear almost entirely from the computer literature
in the years that followed. Addition and subtraction processes
came first (and simultaneously), followed by multiplication and,
finally, division. All three sections were concerned with com-
paring quantities in one register with those in another register,
making changes based on the comparison and desired operation,
and moving the quantities to another register. The audience likely
understood little of this during the lecture, and reading the de-
scription of these basics also requires great concentration. But
one thing was clear: computing in the digital computer could also
be described as a mechanical process. What was new about it was
that quantitative values were not changed by precise turns of a
sprocket wheel, as in mechanical calculating machines, but rather
by comparing and writing them. Computing, as claimed in the
UNIVAC ad spot, actually went hand in hand with sorting, classify-
ing, and decision-making.

As it turned out, the explanation of basic arithmetic opera-
tions under digital conditions was all the presenters had to say
on the subject of arithmetic. No mention was made even of how
to deal with logarithms or trigonometric functions. Instead, the
speakers held forth on counting and checking. In the computer,
cycles and program steps were counted, and each letter or number
was checked to see whether its six-digit coding had an even or odd
number of ones, and consequently a one or a zero in the seventh
position (and control point) of the code. Even or odd – that was
the question confronting every character in digital space. Once
the fine details of the computing process and data control in the
innermost part of the machine had been discussed, the lecture re-

31

shut the door to the inside of the computer and explained from
the more comfortable outside perspective how this black box was
to be supplied with power and cool air.

The second part of the talk was dedicated to the applications
of UNIVAC. UNIVAC lived up to its name, the speakers said, because
it really was a “Universal Automatic Computer.”37 Although they
were referring to the still very vague future in the “ever-widening
field” of electronic digital computers, Eckert and his colleagues
did not want to stop at sweeping assertions. After all, they were
also talking about the very real future of Remington Rand. As with
computing, their rhetorical strategy was to explain the applica-
tions of their all-purpose automatic computer in concrete terms.
To this end, the applications were sorted and classified, and a
distinction made between scientific, statistical, commercial, and
logistical uses.

The order of the applications was not random. It produced a
sequence that led from scientific insight to entrepreneurial action.
In doing so, it assumed (as sorting, classifying, computing, and
decision-making) both the epistemic and practical relatedness of
the fields of application. First up were scientific problems, which
had more to do with logistics and business than many scientists
were comfortable with. Howard Aiken, for example, had no ob-
jection to using conventional elements of mechanical accounting
machines when working with IBM. But at the same time he had
always insisted there was a fundamental difference between ac-
counting and scientific computing. His Automatic Sequence Con-
trolled Calculator, with its wide range of mathematical functions,
was designed exclusively for scientific computing.38 The presenta-
tion of UNIVAC, however, took a totally different tack. The com-
puter was primarily intended for the commercial market. That
meant biting the bullet and showing that UNIVAC could also hold
its own scientifically if need be. The presenters enthusiastically

32

explained that their machine could compute large, general-pur-
pose matrix algebra routines in a reasonable amount of time. In
less than half an hour, they said, they had found six solutions to a
system of 385 simultaneous equations based on a “second-degree
nonlinear differential equation” for the flow of gas in a turbine.39
UNIVAC’s claim to the field of science and engineering had been
neatly secured with just three examples.

No less was expected of a computer that wished to play in
the top league. And it permitted a segue into the much more bu-
reaucratic field of population statistics, where electromechanical
Hollerith machines had previously held sole sway. Thirty tables
listing age, sex, race, ancestry, education, occupation, employ-
ment, and income had been compiled for each county, city, and
borough in the 1950 US Census. The focus of this application was
not computation, but sorting, classifying, and aggregating tens of
thousands of punched cards. Once the information on the cards
had been transferred to magnetic tape, there was no need for
manual labor except to change the rolls and collect the printed
results. UNIVAC was obviously capable of processing data that
were already undergoing rationalization at large companies with
punched card machines.

UNIVAC also provided automation for the third area of ap-
plication, which was commercial problems. Here, the issue was
dealing with the roughly 250,000 changes made each month to 1.5
million premium, dividend, and commission statements for a life
insurance company. Although the computer required 135 hours to
accomplish this task, each policy took only half a second to calcu-
late and nine seconds to print.40

The fourth, and final, field of application was logistical prob-
lems. This application ensured UNIVAC’s all-purpose future. The
aim of these kinds of computations was to quantitatively assess
whether a desired production process or mobilization plan could

33

be supported logistically and how it could be optimized. As an
example, Eckert and his colleagues described computations per-
formed to determine the critical raw material requirements for
constructing a given number of machines of different types, bro-
ken down by quarters over a production period of two years. A fur-
ther problem, the complete stock control for a large supply office,
had yet to be run.41

With the expanding range of fields introduced by the speak-
ers, UNIVAC was coming to resemble less an instrument for sci-
ence and the military than a device for helping to sort, classify,
compute, and decide questions concerning population develop-
ment, business administration, and civilian forms of operations
research.

These and similar machines would increasingly be occu-
pied with problems of sorting, classifying, computing, and deci-
sion-making in digital space. Programming made it possible to
migrate to computers the typical calculations done in science, sta-
tistics, economics, and logistics – speeding them up and hiding
them, if not avoiding them altogether. At the same time, and this
was the big promise, the first realistic possibilities for practical
use opened up a world of quasi-industrial production, processing,
and organization of characters.

With UNIVAC, a field of work had emerged around 1950 whose
calculation principles had already ceased to be the focus of atten-
tion. Of course, UNIVAC was ultimately also a “computer.” In terms
of IT and programming, however, the “C” at the end of UNIVAC’s
name signified only the control bit of a promising field of activity
for which techniques of organization, programming, formatting,
and rules had yet to be developed.

This fact had also caught the attention of French classical phi-
lologist Jacques Perret. In the spring of 1955, IBM France asked
Perret to think about a name for a new, completely different com-

34

puter. IBM’s aim was not to produce a machine that could simply
decode secrete messages by brute arithmetic force, calculate bal-
listic curves, or compute the critical mass of a plutonium bomb.
Rather, the company was developing a machine to do much more
general information-processing tasks. Perret answered immedi-
ately: “Que diriez-vous d’ordinateur?” (What about “organizer”?).42
The word was already in Littré’s French dictionary, though only
in adjectival form.43 Still, it was grand enough to apply to God (as
organizer of the world). Language-wise, ordinateur could easily be
converted to a verb – ordiner, “to organize” – or the act, ordination.
As a Latin specialist, Perret had a penchant for the feminine form
of the noun – ordinatrice – which would spare IBM any religious or
ritualistic connotations.

The company had a different idea and did in fact choose or-
dinateur for its first commercial computer in France, giving it a
decidedly masculine and slightly sanctified air. In English, it was
called the IBM 650 Magnetic Drum Data Processing Machine.
Both languages preserved UNIVAC’s procedural aspirations. More-
over, like UNIVAC, the IBM machine was obviously not just a com-
puter. Rather, it was also intended to point the way and, as the
Remington Rand group said of UNIVAC, be “true to its name.”

The IBM machine did not become famous because of its name,
which ostensibly had nothing to do with computing. The machine
became famous for its ability to detect and automatically correct
errors in the program, and thus keep the process of sorting, classi-
fying, computing, and decision-making going.

35

Programming

Now that calculating took place in the innermost part of a black
box, without the fascination of shafts, gears, cams, or counters, it
increasingly resembled a machine-aided sorting task. It became
unspeakably boring. The overwhelming significance, the unprec-
edented speed, and the sheer breadth of the ordinateur’s fields of
application did absolutely nothing to increase interest in com-
puting. Rather, they served to postpone to some future time the
critical functions that the machines and their operators would be
performing.44 Because electromechanical relays had been replaced
with noiseless vacuum tubes, it stood to reason that, in this brave
new order, personnel could soon simply issue commands and
make decisions while the machine labored silently away. But in
the early 1950s, the difficulty was getting the computer to work
(reliably). Every job for the machine had to be parsed into appro-
priate command sequences, which in turn had to be meticulously
written so the computer could interpret them properly. Demands
on personnel increased.

Eduard Stiefel, a professor of applied mathematics at ETH in
Zurich, took note. Stiefel and his group ran the “Z4” computer that
Konrad Zuse had transported from Berlin to the Aerodynamics
Research Institute in Göttingen in April 1945 and shipped from
there to a flour warehouse in southern Germany. Zuse wished to
save himself and his computer from Allied bombs and from req-
uisitioning by the Red Army. In 1948, he adapted his computer to
suit the new conditions in bombed-out, occupied Germany. At the
same time, he was seeking a base with a stable power supply, a
lively interest in applied computing, and an intact industrial cli-
entele. In 1949, he found what he was looking for at ETH’s Institute
for Applied Mathematics.45

36

In 1954, Stiefel reported on his experiences with the Z4 and
his own device, the Electronic Calculating Machine at ETH (ER-

METH).46 The general tone of the report is remarkable. The first
sentence alone dismissively refers to “digital calculating ma-
chines,” which “like desk calculators are devices capable only of
performing the four basic arithmetic operations on digital rep-
resentations of numbers.” The only difference from conventional
desktop calculators was that the “sequence of the individual arith-
metic operations [was] automatically managed by a control unit
that read the arithmetic program.” This control unit contained the
individual commands to be executed by the machine, “which have
been prepared by a mathematician and are recorded, for example,
on a punched tape.” Everything else, of course, was known and,
Stiefel implied, not worth mentioning.47

Stiefel obviously wished to emphasize the “totally replica-
tive character” of his systems. Thus he also stressed “preparation
of the calculation program by the mathematician.” This required
“mostly much more time and mental effort than the one-time ex-
ecution of the calculation by hand would take, and often involves
an additional burden for the person whom we will henceforth call
the programmer owing to the crude organization of tasks for the
computer.”48

If the work of programmers was to be worthwhile, they
should limit themselves to preparing tasks for the machine that
would need be to be calculated again and again in the future. Ex-
amples included routine tasks such as solving linear equations or
calculating flight paths. Stiefel found it useful to create an entire
library of standard programs that could make use of the high elec-
tronic computing speed of the machine with little preparation.
But if the computers had to deal with a different problem for each
job, or if some calculations had to be performed only once, or only
on a trial basis, then programming would consume “too much of

37

a talented employee’s time and stamina.” Programmers would be
constantly “badgered” by the machine.49 “The calculating autom-
ata,” Stiefel lamented, “have taken numerical computing away
from us, but have brought us the even more tedious work of pro-
gramming in its place.”50

Computing and programming proved to be highly interde-
pendent challenges, not only due to their intrinsic tedium but
also because of the discipline and organization they required.
No sooner had the last wires been soldered and the last electron
tubes inserted into their sockets than the huge task of organiz-
ing the computer began. For that reason, noted John W. Carr of
the MIT in 1952, programming would soon prove to be a decisive
bottleneck in digital space.51 The US Air Force had made a similar
observation that same year: “The inert machinery solves no prob-
lems and satisfies no needs.”52 The scene around the computer

Figure 5: Electronic “calculators” were labor-intensive machines. The
ERMETH workforce around 1953.

38

urgently needed to be enlivened with personnel who could give
the machine a hand. And that, in turn, meant that mastering the
machine was also a matter of training, selecting, and managing
programmers – directing them, as it were.

The processes in the machines had to be structured in such a
way as to allow commands to be translated into machine code and
to enable access to stable program elements or subroutines. Com-
puters had to learn to report faulty code to the programmer. Pro-
cesses involving personnel, that is, the division of labor among
mathematicians, customers, programmers, operators, and electri-
cal engineers, had to be specified in such a way as to guarantee a
high degree of reliability in processing any and all orders.

In this respect Stiefel was very inventive. Were it up to him,
the programmer working the front end would have as little to do
with applied mathematics as possible. It was important not to
unnecessarily jeopardize the already precarious academic reputa-
tion of the discipline. So Stiefel tried to keep programming away
from ETH’s mathematicians and pass it on expeditiously to his
customers in industry. Customers who wished to reserve comput-
ing capacity to calculate, for example, the stresses in a dam, the
vibrations experienced by a four-axle locomotive, or the critical
speed of a turbine, were required to take a programming course
with one of Stiefel’s assistants.53 Employees of the institute only
checked customer programs. Engineers were entrusted with the
electromechanical work on the machine, and the institute’s own
programming tasks were delegated to specialized support per-
sonnel.

The history of digital space is replete with cases where de-
velopments in a particular area immediately led to major disrup-
tions and bottlenecks in other areas. Due to the increased speed
of computing, a bottleneck formed in programming, which – as
Stiefel’s experience with the Z4 and ERMETH showed – could be

39

eliminated either by supportive organizational measures or by
creating a specialist role in the form of the programmer. However,
it proved difficult to train a large number of programmers adept
at controlling the machine to meet demands without constantly
introducing new errors in the logic of complex programs.

What to do? You might treat programmers as a distinct de-
velopment problem – putting them in a well-shielded office (as
in the UNIVAC film), and seeing to it that armed with their sten-
cil, a pack of cigarettes, and a limited number of commands, they
were neither badgered by the computer nor seduced into feelings
of superiority by the task at hand.54 Alternatively, you could try to
get the computer to develop parts of programs. Tedious program-
ming in particular could be performed by the computer itself. This
had long been advocated by Heinz Rutishauser, one of Stiefel’s as-
sociates: “Thanks to its versatility as a plan assembly device,” the
program-controlled calculating machine could be used for calcu-
lating the “totality of commands comprising individual steps of
the calculation.”55 That same year, John W. Carr, who was working
on the development of the Whirlwind computer at MIT, reported
on his work on automatic programming procedures.56

The “automated performance of calculating tasks” articu-
lated by Zuse before the war had progressed to computer-assisted
production of programs that told the computer how to compute.
Questions of mutual learning and clearly defined responsibilities
for both machines and personnel were addressed.57 In the pro-
cess, programmers and computers taught each other what they
should do, could do, and possibly would do if they managed to in-
teract successfully. Programmers sometimes expertly intervened
directly at the machine level when something went wrong, and
computers learned to reject unreasonable jobs. “You’re trying to
divide by zero,” read one such bit of feedback. The computer’s as-
tuteness even made it onto an advertising poster for UNIVAC: the

40

Figure 6: Reciprocal learning between humans and machines.

fine print claimed that the computer could locate human errors,
execute commands in ordinary business English, and produce its
own programs.

41

Nonetheless, the extent to which standard procedures could
relieve human programmers was clearly limited. As Stiefel put
it, each program stored “in the automaton” ate up memory. In
addition, the automaton mainly carried out “logical rather than
arithmetic operations…It interprets, modifies, and iterates in-
structions, switches programs on and off, and tries to find a
way through the nested loops of computational structures. But
it rarely computes.” Here, Stiefel was being deliberately provoc-
ative. If technical equipment were replaced with a hierarchy of
programs, the result would probably be a “device consisting of an
amorphous pile of vacuum tubes or other electronic components,
in which even the addition of single-digit numbers would have to
be programmed” – what any child could already do in their head.
All you’d get would be a not very efficient calculating monster, and
an idle one at that. Stiefel may have been among the first to take
this line of reasoning. He was by no means the last.

Despite the considerable skepticism, the instruction bottle-
necks caused by the increased speed of computation and inade-
quately trained personnel were at least partly mitigated by tech-
nology. At a conference in Toronto in 1952, Richard Ridgway of
Eckert and Mauchly reported on the state of the art. Most of the
time was lost in programming, when already written parts of pro-
grams had to be searched for, adapted, and rewritten. The process
was totally inefficient, he said, and it was an inexhaustible source
of new programming errors. For that reason, Eckert and Mauchly’s
Computational Analysis Laboratory had developed the “compiler”
method. The technique was currently being tested on mathemat-
ical problems, but it would soon be applied to commercial ones.
A compiler independently searches for subroutines, adapts them,
and assembles them into a complete program. Ridgway showed
that the programming time required to do that could be dramat-
ically reduced with just a fraction of additional computing time.58

42

Thus, it was not only computational and sorting tasks that
shifted to the computer in the early 1950s. Production of the parts
of programs that did those jobs also shifted to the computer. Com-
piler development showed that programming was a crucial fea-
ture of computer organization. But the shift also highlighted the
uncomfortable position of programmers, caught as they were be-
tween the machine and mathematics, between engineering and
creativity, and between code and text.

Reconceptualizing mathematics in more formalistic or even
mechanistic terms might well have proceeded along the line of
modern mathematics. Or coding might have been afforded more
design freedom.59 Both were conceivable, but in the mid-20th cen-
tury, neither appears to have been on the radar. Despite compilers,
programmers still had to be massively trained and instructed in a
new discipline and were expected to keep their initiative in check.
Their superiors required them to learn specialized languages,
write reliable code, be extremely patient, and – sympathetically
and with the aid of the compiler – force the wayward machines to
read and execute each program correctly. The training and taming
of programmers was the most critical factor in getting the com-
puters to obey. And vice versa.

Once the soldering was done, the work of organizing the com-
puter to make it functional was exciting. Programmers were for-
ever having to break new ground in issuing sequences of instruc-
tions to computers and getting them to comply. And despite its
formal rigidity, programming remained an ever-changing task.
New languages, new dialects, and other things were always pop-
ping up.60 Programmers were considered exotic, elusive figures,
operational and functional necessities, a deficient form of human
capital, a source of project delays, and reluctant participants in re-
training courses. Yet all the while, the machine-side prerequisites
for programming continued to evolve. Consequently, beginning

43

in the 1950s, it was impossible to say for sure what a computer
was, what a programmer did, or how the machine and human re-
lated to each other.

Understandably, commentaries on programming and com-
puters are plentiful. But it is hard to spot any consistency in their
relationship to one another, or even a trend. Any commentary on
programming necessarily implies computers, whether explicitly
stated or not. In any event, by the late 1950s, Fortran, Algol, and
Cobol were widely used, sufficiently monotony-proof program-
ming languages that moderately creative programmers could
handle. The principle of the compiler had also become common-
place and a prerequisite for developing programming languages.
Most important, by the end of the decade no one was surprised
that moving sorting and calculating tasks to the digital computer
always involved a fair amount of programming. The program-
ming bottleneck that had caused headaches at MIT in 1952 was
now plainly obvious.

As computers manufactured by IBM and the “seven dwarfs”
– Burroughs, UNIVAC, NCR, Control Data, Honeywell, General
Electric, and Radio Corporation of America (RCA) – became avail-
able to handle an increasing number of applications in the early
1960s, demand for all forms of programming shot up. Not just the
military but also government, airlines, banks, insurance compa-
nies, and retailers advertised for programmers to meet the needs
of their customers by automating and rationalizing their opera-
tions, spurred by the economic boom. When necessary, these pro-
grammers were trained to use the Beginner’s All-purpose Sym-
bolic Instruction Code (BASIC), a starter language developed in
1964 at Dartmouth College in New Hampshire. BASIC eased their
way into more powerful programming languages.61

Some programmers who had been trained by manufacturers
stayed with the customers. But programming was critical to the

44

development of computers, and recruitment of programmers was
therefore an ongoing issue, especially in Europe.62 Research teams
tried to work out precise needs, appropriate qualification systems,
recruitment incentives, forms of training, and evaluation criteria
for programmers. They strove to distinguish between systems an-
alysts, junior systems analysts, programmers, and coders – only
to have their carefully constructed categories collapse.63 Not even
aptitude or talent tests helped. The attempt to create an ideal clas-
sification of programming personnel failed from the outset be-
cause of widely divergent ideas about what a programmer should
be able to do, other than write lean, error-free code.

It wasn’t even clear whether a “strong thinker with a capacity
for abstraction and logic” who was a “fairly good worker” was pre-
ferred or an “intuitive, imaginative type.” The “ideal programmer”
would combine both profiles. He was “obviously a rare phenome-
non” as an elite Dutch study group noted in attempting to refine
the profile of an ideal programmer.64 More important than specific
requirements for programmers, however, were specific program-
ming languages and documenting them in manuals, teaching
programming courses, and reckoning with an extremely diverse
pool of prospective recruits. Participants in programming courses
were typically teachers and accountants, PhDs in physics or math-
ematics, and electrical engineers who liked computers. The fact
that career guidance literature also advertised programming as
a profession did little to improve the dry labor market. Even an
instructor’s recommendation that programming courses employ
“teaching machine technology” was inadequate to solve the prob-
lem of the enormous demand for programmers.65 To produce pro-
grammers who could program computers, you needed computers
that could program programmers. The interdependence of com-
puters and personnel was enormous.

45

Formatting

In theory, once computing itself had disappeared into the black
box of the computer, and programming had been delegated to
well-trained specialists and to the machine, the tasks to be exe-
cuted in the computer could actually begin. The promise that “dig-
ital computer techniques” would simplify, accelerate, and lower
the cost of big information processing jobs was welcomed with
enthusiasm by many. Instead of having to slog through a large
number of arithmetic operations, people now anticipated being
able to process large amounts of data.

George Brown and Louis Ridenour of the International Te-
lemeter Corporation in Los Angeles were among those who re-
mained skeptical. In 1953 they judged programmable punched
card machines to be so advanced that large amounts of data could
hardly be processed faster by digital computers. For example,
IBM’s card-programmed electronic calculator had already solved
practically every desired calculation problem. A digital computer
wasn’t really needed, because the problem was not with calculat-
ing, but with the format of the data. There were simply no input
or output devices powerful enough to “couple” the “world of the
digital computer” to the “world of men.” A solution would have to
be devised.66

In 1951, in introducing its card-programmed electronic calcu-
lator, IBM had chosen an illustrative example that fell in the gray
area between scientific computing and technology development
and that involved huge amounts of data. The issue was missile
control during a 100-mile test flight. Along the route, the cus-
tomer had set up whole arrays of cameras and phototheodolites
that shot a hundred images of the passing rocket per second. Pre-
viously, these images were handed over to a group of female “com-
puters” who labored away for two weeks at analyzing thousands

46

of images. The new, card-programmed electronic computer could
do the task in eight hours.67

The successful exercise did not lead the unnamed customer
to conclude that card-programmed machines would essentially
solve the problem. In 1954, Jerome J. Dover of Edwards Air Force
Base in California reported with a note of despair that data col-
lected by people in uniform were not automatically uniform.
Test flights could really only collect “raw uncorrected data,” he
said, and that applied to all Air Force experiments on the high-
speed track and the rocket engine test station.68 Some classified
projects also involved large heterogeneous batches of data. Like
Brown and Ridenour, Dover noted the need for fast and reliable
input techniques, and maintained that faster computing ma-
chines were unnecessary. It seemed much more important to him
to get the records of the measuring instruments into a form in
which they could be processed, for example, by an IBM punched
card computer or a digital calculator.69 The IBM punched card com-
puters would have reduced the computing time considerably. At
the same time, reading and processing the data had become a real
bottleneck. For Dover, the key thing was to develop a centralized,
automatic data processing system and in the future to capture
data in such a form that the processing machine could read it
without the help of a human computer. For analysis, it would be
possible to avoid having to hire and train so many recruits to read
automatically produced films, photographs and curves depicting
flight parameters. Moreover, a smaller workforce meant not only
lower personnel costs but also less “contamination” of test results.
Reading errors occur constantly when transferring raw data into
a standardized data format. Only an automated data preparation
system for capturing raw data in a standardized, machine-reada-
ble format would enable the Air Force Flight Test Center to survive
the oncoming flood of data.70

47

Data processing thus necessitated data processing. The central
computer destined to prevent the end of the world by replacing the
raw data from the measuring instruments and the dubious perfor-
mance of the human analysts was still a work in progress. There-
fore, the Air Force had asked the Ralph M. Parsons Company in Pas-
adena to solve the raw data problem. According to many reports, the
company came back with an idea for an “all inclusive and extremely
comprehensive black box.” The black box would take both analog
and frequency-modulated, digitally encoded signals as input, and
output them as digital type, digital punched cards, analog signals,
or magnetic tape. The output would then in turn be available as in-
put for analog or digital computers.71 The gates to the world of com-
puters had to be equipped with a large translation machine. This

Figure 7: Preparing data for analysis at the Erie Railroad Company (1958).

48

machine would automatically convert analog records into discrete
values so that they could be encoded and processed by computers.
Whether the processing was analog or digital was secondary to the
solution of the formatting problem.

There is little point in trying to decide whether the Ralph M.
Parsons Company actually solved the data formatting problem or
not. What is of interest here is the strategy employed in solving
the problem. Obviously, the idea was to handle data similarily
to (digital) computing and (digital) programming. Which basi-
cally meant creating a central processing unit that behaved like
a black box and ensuring that the result was sufficiently versatile.
Data formatting was thus the sine qua non for adapting highly
diverse fields of activity to the capabilities of the computer. Ex-
perience with program-controlled expansion of computing ca-
pacity showed that processing always depended on appropriate
input format. In the case of the Air Force, that meant reducing
the amount of data in an intelligent but machine-like way, and
devising suitable formats to do it. It was to be hoped, wrote Do-
ver in concluding his report, that in the future the limiting fac-
tor in evaluating test flights would once again be the processing
capacity of the lead engineer and his staff, and not “obsolete data
processing methods.”72 For that reason, he preferred to reduce data
heterogeneity by automatically formatting it rather than to rely
on increased computing capacity.

Adapting formats affected users, peripheral devices, pro-
grams, as well as computers and the people who operated them.
Everything was subject to formatting procedures so that pro-
gram-supported transactions could be set in motion in the still
unfamiliar space of the computer. The formal rules of program-
ming language, the format of input and output data, the equip-
ping and training of programmers, and the layout of the equip-
ment and connections – all had to conform to fixed formats so the

49

computers could process information.73 The resulting changes in
speed did not always lead to congestion at the same point. While
for the aircraft test heterogeneous raw data was a major problem,
in the case of the census the problem was mainly limited capacity
of input and output devices. James L. McPherson of the Census
Bureau reported in 1953 that the available input–output facilities
could not keep up with the information processing capacity of
UNIVAC.74 Census takers could expect fairly uniform data formats,
because they had standardized their forms over many decades.
But the entries from the surveys were recorded on paper and first
had to be brought into the computer.

McPherson vividly demonstrated the complicated work of
shifting from analog to digital space. A census taker who was
participating in a survey recorded the information received on a
form. In a second step, this information was translated into nu-
merical codes by a clerk at the Census Bureau. Another bureau em-
ployee in turn transferred the numerical codes to punched cards
using a manually operated punch machine. Only at this point did
an automatically operated machine come into play. A card-to-tape
machine transferred the “intelligence” from the punched cards to
magnetic tape. Now, finally, the input was ready for processing by
the computer.

According to McPherson, it would be ideal to have a machine
at hand that could do away with the entire translation sequence,
that is, the encoding, the punching, the change of media from card
to tape, and perhaps even the tape itself. Together with the Na-
tional Bureau of Standards, the Census Bureau was in the process
of developing a machine that could at least transfer the census
takers’ notes directly from the form to a magnetic tape. But this
would require changes to the recording process, that is, a com-
pletely restructured form which would no longer have words and
numbers written in fields but rather marks at certain positions.

50

To bring the world into the computer, the speed of information
processing in the world’s homes and factories would have to in-
crease. And for that to happen, new ways of formatting the world
would have to be found.75

As McPherson showed, the input process remained a trou-
ble spot. It represented the transition from the world in which
people operated (and time was measured) in months, days, and
hours to the electronic world of data processing, in which time
is measured in seconds, milliseconds, and microseconds. Better
mechanical components might help to solve the problem. But in-
put devices would probably never operate at speeds comparable
to those achieved inside the “information processing equipment.”
Means would simply have to be found to minimize the inefficien-
cies caused by slow input.76

Although the census takers may well have wished for faster
input methods, at UNIVAC, in view of the impending transfer of
the census into the computer, great importance was already be-
ing attached to reading speed. In contrast to the options availa-
ble using IBM’s ubiquitous punched card computers, Eckert and
Mauchly used Uniservo magnetic tape machines and some of
their computer’s programmable computing capacity for the input
and output processes. Input and output would be run automat-
ically, and consequently all magnetic tape activities were trig-
gered by “programmed instructions in the computer memory.”77
In other words, already in the early 1950s the principle of the
self-controlling computer was also applied to reading and writing
data. Consequently, part of the input process was handled by the
computer, just like parts of the programming routines were.78

Taming the computer – that is, exploiting the new digital
sphere of operation – was enabled by a culture of systematic in-
struction implemented by programmers. Grace Hopper, a math-
ematician from Yale University who had done computing at

51

Harvard in the service of the navy during the war and who had
been instrumental in developing UNIVAC, took up this subject in
a 1952 article on educating the computer. A female role model in
the thoroughly male-dominated world of early computers, Hop-
per was convinced that developing subroutines would free pro-
grammers of the burden of formulas and tables of functions. Nor
did they need to know the particular instruction code used by the
computer. Anyone who could read a catalog would know what to
tell a computer to do to solve a problem. “The programmer may
return to being a mathematician,” wrote Hopper optimistically.79

The experiences of the census takers and test pilots, however,
showed that successful taming of the computer through program-

Figure 8: Processing data for data processing: a Census Bureau em-
ployee translates a questionnaire into punched-card format around
1950.

52

ming and transferring known routines into the machine’s digital
space depended on solving the formatting problem. The fact that
Hopper, a mathematician in uniform, believed data formatting
to be trivial and, consequently, underestimated it in no way miti-
gates this insight. The computer calculations Hopper had carried
out during the war under the command of Howard Aiken were
not data-intensive but rather computationally intensive tasks.
What was striking about a computer solving a differential equa-
tion was not the amount of numerical test material fed into the
machine to calculate a particular variable in an equation during a
trial run. In fact, most of the values in a system of equations could
be produced in the computer itself, using a simple counter that
stopped counting at a given highest or lowest value and then told
the machine to stop calculating in turn. The striking thing about
such tasks was that they required the same arithmetic operations
over and over again, in overwhelming numbers.

The initial underestimation of the formatting problem was
not only due to the relatively low amounts of data used in scien-
tific computing in the early 1950s. As computers became more
frequently used for commercial, data-intensive tasks, it was as-
sumed that any difficulties in sorting volumes of data had long
since been resolved. Since the Taylorist bureaucratization of com-
panies in the first decades of the 20th century, Hollerith machines
had become established in large firms.80 Insurance companies
had whole truckloads of punched cards on which customer ad-
dresses and premium billings were encoded. Banks would never
have been able to cope with massive amounts of transactions in
foreign exchange or payments without punched card machines.
Large administrative tasks involved collections of punched con-
trol cards.81 It seemed an easy thing not only to have the data
from information-intensive companies re-sorted by Hollerith
machines but also to have it read into the more universal dig-

53

ital computers. Yet doing so was a mistake, as experience with
raw data from Air Force missile and aircraft tests and the labori-
ous transfer of census taker survey sheets to UNIVAC’s magnetic
tapes showed. The assembly line on which sorting took place had
indeed already been set up and the punched cards selected. But a
slew of translation challenges remained to be mastered to make
fast, program-based computerized data processing a reality. It was
not only a question of how data were formatted, how processes
were programmed, and how the computer did its calculations. It
was also a question of organization and operation.

55

3	 Sharing and operating

Traffic within the digital space was plagued by bottlenecks. Speed-
ing up computing caused programming glitches. Any attempt to
make the programming more efficient strained computing ca-
pacity or increased the data formatting requirements. The long
path that led from encoding, formatting, and inputting data to
processing it into a readable form was susceptible to peak-time
traffic jams and hold-ups that slowed operations of meticulously
prepared flowcharts to a trickle at certain spots. So-called batch
processing was the most important form of traffic control. It re-
quired all data with identical processing steps to be processed
in batches without further user intervention. This approach was
akin to temporizing the capacity problem. Only when everything
was lined up correctly and there were many uniform tasks did us-
ing the computer make sense.

It was hardly surprising that many administrative computing
jobs had to be carefully prepared. Data that often required only
minimal updating annoyingly still had to be rearranged, recopied,
and sorted all over again so they could be properly processed and
assembled into reports. But even when the data were impeccably
formatted, the computer would sometimes stall, waiting for in-
structions while a new program needed for a specific analysis was
prepared. Both cases ran counter to the analogy of the assembly
line, in which small, repetitive operations on standardized units
followed in rapid, perfect succession to deliver uniform products.
It was time to take a more aggressive approach to organizing the
entire computer system.82

Yet the question of organization went to the very heart of dig-
ital space, from basic responsibilities to procedural rules and the

56

interaction of subsystems to the architecture of entire installa-
tions.83 Clarity was needed regarding how autonomous automated
processes should be, how priorities would be decided, and which
interactions should be allowed between machine components,
data, users, and programs.

A shaky concept of automation invites reflection about
whether the means are adequate to the goals. Alternative or-
ganizational principles must be discussed. Given the high cost
of a computer system, it made little sense to leave it idling. For
universities and parts of the army that relied on computing and
cared little about market forces, a certain nonchalance toward
efficiency may have been understandable.84 But companies that
wished to migrate their administrations into the computer to
speed up their business processes had to face up to the problem.
If tomorrow’s administrations were to be automated like facto-
ries, and if they were to employ a veritable fleet of computers
for this purpose, then it was only logical to judge them by the
standards of factory equipment. The efficient organization of
the computer therefore inevitably also became a question of eco-
nomics.85

Based on experience, the cost–benefit ratio of a piece of equip-
ment – a common metric in the industrial sector – could be im-
proved if the machine did not have to be dedicated to a specific
job. The same principle applied to computers. While waiting, they
could, for example, sort cards, copy other files, and then – in the
fast lane, as it were, and with the help of magnetic tape – con-
tinue processing the jobs with adjusted programs. However, this
flexible approach to traffic required abandoning the idea of liter-
ally translating conventional forms of data processing for digital
space. In other words, organization in digital space would have to
follow its own rules. Familiar processes could then be redesigned
thanks to the computer’s increased internal complexity.

57

Time-sharing

Only in the second half of the 1950s do computer engineers seem
to have found the courage to stop thinking of commercial data
processing systems as assembly lines.86 By and large, observed
IBM development engineers Murray L. Lesser and John H. Haan-
stra trenchantly in December 1956, the computerized handling of
business data was not so very different from historical, “in-line”
data processing. Lesser and Haanstra employed this bit of rhetor-
ical downplay to bide their time before making a bigger point:
what companies were doing with digital, programmable comput-
ers was nothing more than a “file-maintenance operation.” Most
of the computer’s time was spent not on computing or producing
new reports, but on arranging the data.87 If the condition that in-
formation had to be stored in a predetermined serial order were
removed, that is, if information could be retrieved separately
from any memory location for processing, then the principle of
batch processing could be dispensed with and any job could be
done exactly when it needed to be done.

This kind of memory system was called random access. In or-
der to correct, supplement, and reorder entries, it should be pos-
sible to access any point in the memory at any time. Data would
no longer have to be fed to the machine as a batch. With random
access to any place in the memory, it would be possible to read out
individual elements from the reference files in the memory, and
in the order required by the new input or the current processing
procedure. “In theory,” wrote Lesser and Haanstra, “a machine
can be built to take an input transaction record and carry it all the
way to the final output document.” En route, the corresponding
records in the machine’s memory could also be updated.88 Because
now, according to Lesser and Haanstra, processing a transaction
could always take place at the moment it occurred. In this sys-

58

tem, the time needed for processing was independent of whether
or not further transactions of the same type followed. In other
words, creating homogeneous batches no longer offered any effi-
ciency gains. A random-access machine thus kept a supply of data
ready in the computer for ad hoc access on a rotating, magneti-
cally coated drum.

Figure 9a: Random access: the “floor plan” of a conventional data
processing system.

59

This change in concept was also reflected in terms of rep-
resentation. The diagram for the conventional data processing
system that Lesser and Haanstra took issue with looked like the
floor plan of a manufacturing plant with an assembly line running
through it. In the diagram of a system that worked with random
access, on the other hand, the assembly line was hardly recogniz-
able. That is, if you really wanted to keep things flowing, you had
to abandon the assembly line concept and increase the internal
complexity of the system. From now on, there would be only one
input station outside the machine, where punched cards with ad-
ditional data were produced. The data would then be processed
immediately without any further sorting or arranging steps. The
results could be output in many different forms.89

Figure 9b: Random access: one input, many forms of output.

60

A third schematic depicting the system’s organization
showed how complex it actually was. A view of the computer’s in-
sides showed the numerous points at which the machine had to
decide what should happen next for a given job. Organizationally
speaking, the machine was the authority that decided processing
steps and procedures for reading, modifying, and collating infor-
mation, and that distributed updating and output tasks inside the
machine.90

As presented by IBM, the random-access concept was prom-
ising. The bottleneck at the gateway to digital space would be re-

Figure 9c: Random access: additional internal complexity.

61

lieved by making procedures more flexible and by distributing
data within the computer. Later, the principle of segmentation
was introduced to get around a second bottleneck related to
programming. Despite efforts to use programs as many times
as possible, “universal” computing actually required constant
(re)programming. Management, the personnel department,
and warehouse staff constantly needed new reports. And each of
these reports required the data to be linked in a particular way,

Figure 10: Line-up at the window of the University of Michigan’s
computer center in 1965 – time-sharing promised to reduce visible
waiting time.

62

tracked different products, or had to adjust payroll accounting
to reflect changes in rules. Arithmetically, these tasks involved
trivial calculations, but the programming code still had to be
written and tested. Programming involved a time-consuming
search for errors. Every infringement of programming language
syntax, no matter how small, had to be found and corrected, and
each time the program had to be tested again. During this pains-
taking work, a computer was only ever occupied for a very short
time – if at all – and did nothing but wait patiently for further
program versions from the programmer. Other programmers
also waited, in their case, for the computer’s input console to
free up.

For precisely this reason, the second development related to
programming aimed to free the computer world of its fixation
on the idea of the assembly line. This shift in thinking became
noticeable at the end of the 1950s, when system developers like
John McCarthy proposed time-sharing to reduce waiting times
for programmers and computers.91 If computer users actually
spent only a small fraction of their time at the console comput-
ing, perhaps the number of possible users should be increased
by granting them access to the computer only when computing
time was really needed. Thus, while a programmer obsessed over
errors (“bugs”) or thought up new (equally buggy) instructions,
the computer might as well be left to another user. No program-
mer should have to wait just because someone else was catching
a breath and preparing to compute. In a 1959 memorandum on
time-sharing, McCarthy referred to computer history and, in so
doing, brought a new rhetorical flourish into play. Computers had
originally been developed with the idea that they would be used
to solve general classes of problems and that computing time
would be spent running these standard programs with new sets
of data. “This view completely underestimated the variety of uses

63

to which computers would be put.”92 The current situation was
much more like the other extreme, where each user wrote their
own program and, once all the bugs were finally worked out, ran
it only once. That meant that the time needed to solve a problem
was mostly spent on debugging. Better programming languages
such as Fortran, LISP, and COMIT would help to reduce program-
ming time. However, further reduction could only be achieved by
shortening the computer’s response time.93

In July 1961 the Science News-Letter announced that individ-
ual computers would soon be able to serve many companies.
McCarthy and others at MIT were developing methods for using
high-performance electronic computing to work simultaneously
on many problems for many users at once. According to the Science
News-Letter, this would be a big step toward building data centers
that could receive data over telephone lines and transmit weather,
economic, or other forecasts to their customers.94

The article was a bit out of date. McCarthy had in the mean-
while left MIT to share his own time with Stanford University.
Nevertheless, his former colleagues at MIT continued to pursue
time-sharing. The rate of interaction between programmer and
computer had to be drastically increased without increasing costs.
Moreover, according to a 1962 paper on time-sharing by Fernando
Corbató and colleagues at the MIT Computer Center, individual
interactions had to be made “more meaningful” through “exten-
sive and complex system programming to assist in the man-com-
puter communication.”95

In May 1963, MIT science reporter John Fitch filmed an inter-
view with Corbató titled “Timesharing: A Solution to Computer
Bottlenecks.”96 From the point of view of narrative, the film was
hopeless. The unambiguous promise of the title was compromised
by the film itself. Fitch had clearly done his homework. But he got
few direct answers to his questions from Corbató, who stood at

64

a blackboard drawing squares and circles with a fiddly piece of
chalk, not stopping to label the symbols with numbers. Even the
slightest query from Fitch elicited a lecture from Corbató. “To re-
ally explain that, I have to backtrack a bit,” he said several times,
because you could only understand (whatever the question was)
if you knew what a computer was and how it worked.97 However,
what a computer was and how it worked was precisely the prob-
lem from the vantage of the time-sharing concept. Thus, Fitch
repeatedly had to bring Corbató back to the original question or
volunteer the answer himself. And, like Lesser and Haanstra’s at-
tempt to explain random access, Corbató was in the unenviable
position of having to talk his way through a computer model. To
understand the advantage of time-sharing, you had to understand
the old model, and that was not the point.98

Nevertheless, Corbató’s efforts gave rise to two striking anal-
ogies and one clever rule. The first analogy stressed neither the
system architecture nor the process bottlenecks, but the perspec-
tive of the users.99 For Corbató, they were the people who were
stuck waiting for the machine. To solve the interaction problem,
he wanted to make the computer available to many users at the
same time, drawing an analogy to the relationship between a tele-
phone line and a switchboard. Each user would be able to use his
or her own machine – his or her own console – and not have to
worry about the activities of other users. The switchboard would
be responsible for them.100

The digital space managed by computers was thus reallocated,
the distribution of resources made more flexible, and their overall
utilization improved. In other words, capacity was increased by ex-
panding the number of buffer spaces while at the same time con-
solidating the flow of traffic inside the computer. That required a
suitable mechanism for registering the peak computing demand of
each user and for temporarily pausing a currently running program

65

of another user. At MIT, the mechanism was a (virtual) supervisor
that regulated and monitored internal computer traffic, allocating
computing time to some users and putting others on hold. To il-
lustrate the process, Corbató briefly adopted the perspective of the
computer. Imagine, he said, a chess master playing several weaker
opponents. The computer quickly makes a move, and while the first
opponent is thinking things over, the computer has already gone
on to the next opponent. Opponents who take a particularly long
time thinking are skipped over and only come back into the game
when they have finally made their move.

At this point, Corbató returned to the perspective of the in-
dividual user. Say that the user is sitting in the computer center
at a ball-head typewriter connected to the computer and reads a
result, an error message, or a question from the computer that has
been printed out onto fanfold paper. As soon as the user knows
what the next command is, he bangs it out on the keyboard and
hits ENTER. Now it is the computer’s turn to respond at the next
opportunity.

In this way, Corbató wished to explain that users in time-shar-
ing mode had to wait less long because the computer only had to
attend to them once they had pressed ENTER and their thinking
had come to a temporary end. Only those who presented the com-
puter with a particularly complex or difficult task had to reckon
with a slight delay in the answer. This had to do with a clever rule
to facilitate time-sharing that they had come up with at MIT and
were particularly proud of. Priority was given not to the most de-
manding computational tasks, but rather to small, routine tasks.
That made it possible to reduce the number of people waiting
much more rapidly than would have been the case if priority had
been given to large and cumbersome tasks.101

Time-sharing was about much more than simply overcoming
the computing capacity bottleneck. Long before sharing became

66

a socioeconomically attractive feat of computational action and
interaction, the MIT project showed that digital space resources
could be multiplied almost miraculously through appropriate
organization. The impressively stolid computer could be turned
into a flexible tool. But success relied on satisfying one condition.
Just as random access required reorganizing the computer so that
data could be processed in any order, time-sharing required or-
ganizational measures that would enable users to interact with
the computer in any order.

Apart from the coordinating role of the supervisor, which was
indispensable for time-sharing and whose widespread applica-
tion I will come back to in a moment, time-sharing gave rise to
two other big and far-reaching questions that engendered much
debate.102

The proliferation of the consoles, or terminals, attached to
computers highlighted the issue of interactivity and made it the
focal point of organizational development for decades. It was no
accident that Corbató compared his system to a telephone ex-
change. The sociotechnical problem of communication with or
via the computer became particularly acute not only from the
moment when the number of consoles hitched to a computer in-
creased but also when they began to be distanced from the com-
puter. Some kind of cable had to lead from the user’s workstation
to the machine in order to transmit requests and responses. The
question was whether this cable was still effectively part of the in-
ternal wiring or whether it already constituted a telecommunica-
tions link between computers.103

The second, no less far-reaching question followed directly
from the first. Would electronic data processing done by univer-
sal computers sooner or later be understood as a “utility,” that is,
as infrastructure? And how centralized should its systems and
organization be?104 Once random access and time-sharing came

67

into the picture, the question of how a computer was to be or-
ganized and, as a consequence, how it would be operated also
became a question of the form of operation and the operating
system.105

Operation

The supervisor was crucial to the experimental operation of the
time-sharing system at MIT. The supervisor regulated the traffic
in the computer, allocated computing time and storage space, and
determined how much latitude to allow individual users. The in-
creasing number of inputs and outputs in commercial comput-
ing, with its many but small computational operations, as well as
the interactivity that time-sharing programming entailed, meant
that computer operations required an entirely new type of con-
trol. The computer had to be able to make condition-based deci-
sions, and these decisions had to be matched with flexible but se-
cure procedures. Metaphorically speaking, an administration was
created in digital space. This administration weighed competing
use requirements, access rights, patterns of use, and accountabil-
ity against each other and regulated the system-compliant inter-
action of hardware components, data, application programs, pe-
ripheral devices, and users.

Since the early 1960s, computer scientists had dealt with
these issues through abstraction and by developing operating
systems.106 The idea behind these systems was to provide a simple
view of all parts of a complex system. The need for operating sys-
tems was justified by the need to optimize the allocation of stor-
age space and computing capacity due to economic constraints.
Operating systems thus constituted a response to the problem of
relative scarcity.107

68

Although organizing the computers made economic sense,
what operating systems actually had to do was political.108 Oper-
ating systems were the policy that applied inside the computer.
They determined what was allowed and what was not allowed,
and they monitored compliance with the rules they set. To ap-
preciate the idea of operating systems as government, you have
to study them in statu nascendi, that is, during development, be-
fore they became commonplace. The description of the operating
system for the Atlas109 computer at the University of Manchester,
published by Macmillan under the dubious title Computers: Key to
Total Systems Control, provides an example.

Writing about computers in the early 1960s meant writing
about two simultaneous types of control. First, the computer sys-
tem obviously had to be organized in such a way that whatever
the analog world expected of it at any given moment could actu-
ally be done in digital space. Second, the organizational structure
of the computer could be thought of as key to understanding the
organizations that might conceivably be relocated to the com-
puter. Tackling these fundamental issues was no trivial exercise,
which may explain why the word “total” prefaced “systems con-
trol” right in the title. Whether the control of the system was thus
meant to be full and complete or whether, in the authors’ view, it
might shift more in the direction of authoritarianism, if not total-
itarianism, is a matter of speculation.110 It is equally unclear who
is addressed as subject and who as sovereign may declare a state
of emergency – the system that controls everything or those who
control the system? In any case, the multilayered formulation was
strategic and aimed at defining responsibilities.

Like Fernando Corbató at MIT, the authors of the report on the
Manchester computer – Tom Kilburn, R. Bruce Payne, and David J.
Howarth – introduced an entity that they initially named supervi-
sor, only to have it morph into the broader notion of operating sys-

69

tem. According to Kilburn, Payne, and Howarth, all the activities of
the system were controlled by this supervisor, which became active
frequently and for a whole range of reasons and which ran on the
same computer as the application programs.111 However, there was
mutual protection between the computer’s object programs and the
supervisor program, which consisted of many, normally dormant
branches. The supervisor would have to be shaken awake, for ex-
ample, if data transfer between different memories was pending, if
something had gone wrong in calculating an exponent, if memory
space became overcrowded, or if computing time was insufficient.
Any object program could call up the supervisor and claim one of
its 250 subroutines from the core memory. However, the relation-
ship between the system and the programs was not limited to one-
way emergency calls from the programs. The system was also able
to easily interrupt programs (interrupt control) and gain access to

Figure 11: Tom Kilburn and his colleagues reflect eager anticipation
of the Atlas supervisor’s monitoring system in 1961.

70

the “private” memory space currently reserved for a user if system
stability required it or if peripheral equipment was being used.

The relationships between different memory types, instances,
and control commands were dealt with in a separate chapter on
the coordination of routines. Here, the focus was on the logical
structure, effective time management, and rules-based interac-
tions of the system and its parts. The authors described a carefully
thought-out ensemble of rules that ensured the system’s interact-
ing components the degrees of freedom they needed, but at the
same time protected them from unauthorized encroachment. At
such instants, the policy also policed.

All of this was quite naturally subsumed under the term “op-
erating system” only a few years later. It is therefore striking that
in the description of the Atlas computer system, the chapter on
structure and coordination was followed by whole chapters on
store (memory) organization, magnetic tape routines, and periph-
eral equipment attended by operators, and then a separate chapter
on the “operating system.” An operating system obviously needed
a long lead time, even rhetorically: in 1962, the operating system
was not yet a stable, sufficiently independent, and comprehensive
concept. It could also be thought of in terms of the supervisor.
That is why the supervisor figured in the title of the essay, and not
the operating system.

This was to change in the near future, for very good reasons.
Operating system would become a generic term, because it denoted
a comprehensive regime or a set of abstract rules distributed
over the entire system. The idea of a set of reliable, intelligent,
and well-balanced rules that gave everybody sufficient freedom
and kept a lid on expectations was already apparent in the text
by Kilburn and colleagues. For as soon as the operating system
was actually mentioned, albeit somewhat late, its significance for
the entire system was immediately and directly obvious. It could

71

be used to deal with a wide range of problems, from small tasks
which required no data beyond the program itself, to large jobs
that relied on several data sources and that might have to be input
from different devices and data carriers.

The setup of the Atlas operating system was strongly oriented
toward allocation security and processing efficiency. When avail-
able computing capacity matched the requested capacity, queues
were shorter and working memory could be emptied after the job
was done. This “regulatory effect” of the operating system was
tantamount to an independent computer administration. After
all, in everyday life, control is inevitably administrative by nature.
The operating system produced information that it could use for
control. How often was the program changed? How many in-
structions was the system processing? When did it need to access
which store? How long did it take to read data and print results?
Did magnetic tapes need to be accessed, read out, and overwrit-
ten? All this, and more, was logged, and the log was then used to
assess machine charges. The log entries were printed out so that
operators could check the computing time used and charge it to
the users. The precarious economics of the computer led to the
systematic monitoring of its operations by an operating system
whose records served as contre rôles for determining individual
operating costs.

The only way to prove the intrinsic worth of the system lay
in generalizing instructions, that is, developing overall routines
and rules of operation, particularly for time-sharing. For starters,
that meant developing large operating systems. Here, however,
the situation quickly became very confusing. The development
of OS/360 at IBM is said to have cost around 5,000 man-years.112
The development of a “Multiplexed Information and Computing
Service” under the auspices of MIT also involved a long-term com-
mitment by the companies involved. With the help of MULTICS,

72

Boston would claim the first future-oriented regional computer
center with general-purpose time-sharing.113 Both OS/360 and
MULTICS featured extremely dynamic requirements; both would
have to develop a highly connectable system that was capable of
anticipating future applications, would require several years of
development time, and yet could assure the stability of its proce-
dures in a rapidly changing context. While IBM wanted to develop
a single operating system for all of its own product lines, MULTICS
pursued the goal of supporting the widest possible range of us-
ers and their human-machine interactions around the clock. As
Corbató and Vyssotsky noted in a 1965 conference paper, the de-
mands ranged “from multiple man-machine interaction[s] to the
sequential processing of absentee-user jobs…to programming of
the system itself,” and from operation of centralized bulk card and
tape readers to “remotely located terminals.”114

The Atlas, MULTICS, and OS/360 operating systems each were
designed with different goals in mind. Atlas primarily controlled
a variety of programs, MULTICS a variety of users, and OS/360 a
variety of machines. However, all three strategies had in common
that they managed the interaction of components, distributed
rights, allocated computing time and different memories, and
logged this activity of machine operations.

The work at the interface between users and machine and the
increased sophistication in memory access and capacity manage-
ment should not distract from the fact that moving the world into
the computer required tremendous restructuring and reinterpre-
tation, which shook the world to its core. One of the most promi-
nent sociologists of the late 20th century addressed this problem
in his habilitation thesis, published in 1966, and drew interesting
conclusions from it in terms of his theory of social systems. In
the preface to his “Automation of Public Administration,” Niklas
Luhmann singled out the high investment costs for the large-

73

scale computers of the 1960s as the main reason why the com-
puter posed such a conceptual and organizational challenge for
bureaucracies. According to Luhmann, “a refreshing compulsion
to think emanates from the fortunate circumstance that the ma-
chines are so expensive. Their price forces one to rationalize the
organization of data processing, even outside the actual system,
to an extent that would have remained impracticable without this
impetus.”115 There was certainly much thinking – deep thinking –
to be done to understand administration as a system and then to
translate the processes typical of administrations into a comput-
er-compatible format.

In so doing, two paradoxical issues arose. First, very different
administrative units had to cooperate across departments. For
instance, the state department of motor vehicles could hardly be
expected to finance computer administration of license plates on
its own, so the computer would have to be used simultaneously
by the revenue department, the local university, and the human
resources department.116 From the perspective of its users, the ex-
pensive computer was rigidly universal: it remained consistently
general purpose and rules bound, had no care for administra-
tive traditions, and was especially impervious to administrative
quirks and specializations. Administrations only became comput-
er-capable once they abandoned specialized formats, processes,
and forms in favor of fast electronic data processing, that is, when
they deviated from the path that had hitherto been considered the
high road in differentiating bureaucracy. This cleared the way for
what promised to be an eventful journey on the part of state and
corporate administrations into the computer.117

Second, the complexity of administration actually had to be
increased so that a computer-friendly simplification of automat-
able transactions could take place. Because administration does
not automatically become simpler by simplifying decision-mak-

74

ing processes (assuming performance remains the same), and
because automation presupposed simplification on the machine
side, complexity had to be shifted, in Luhmann’s words, “from
decision-making behavior into the system structure.” That in
turn would “[bring] organizational problems with previously
unknown requirements to the fore.” To be sure, this was nothing
new for theorists dealing with bureaucracies. For them, “simpli-
fying individual decision steps” was always “achieved at the cost
of complicating the system structure and, by extension, system
planning.” The daily activities of administrators could be relieved
by system complication. Electronic automation of administra-
tion, according to Luhmann, “only took this old insight to its ex-
treme” and “therefore made it apparent, because in this case the
individual decision steps to be assigned to the computer must be
simplified quite radically.”118

Programming the computer presupposed an in-depth analy-
sis of the decision process. That is why it was also an almost inex-
haustible source of problem-oriented thinking about the format-
ting of the social, which made possible its ability to compute.

This insight could also be found across the Atlantic, most
prominently in the work of Herbert A. Simon. In terms of intel-
lectual history, Simon’s writings on decision-making processes,
administrative behavior, organization, and automation could
not have been written without considering the possibilities and
circumstances of structure formation in the digital world. In Si-
mon’s case, this thinking began surprisingly early. He wished to
formalize organizational conditions mathematically (very much
in the tradition of the operations-research literature and cyber-
netics). Luhmann never made such an attempt. He was much
more influenced by the world of computers in his style of think-
ing. Nevertheless, Luhmann and Simon were clearly inspired
by the abstract interplay of rules that computers required to op-

75

erate, and likewise by concepts and procedures used in the field
of computer organization. This can be seen, for example, in “pro-
grams”119 or the “belief that abstract principles of structure may be
discerned in organizations of great variety [like computers], and
that ultimately it may be possible to state principles of general or-
ganization.”120 This possibility was of crucial importance for what
computers had to offer businesses, organizations, and bureaucra-
cies. Both the organization of computers by means of operating
systems and the operation of organizations by means of comput-
ers depended on the interplay of abstract rules.

It became particularly interesting when, once this structural
uniformity had been established, people refocused on differences,
for example, between what tasks could be moved into computers
and what tasks in the analog world were structured differently as
a result of this move. In considering the special problem of the
relationship between an administrative lawyer and a computer,
Luhmann raised the following, quite tricky questions: “Does
[the lawyer] decide less deliberately, less prudently, less ration-
ally than the machine? And if he follows the same principles, can
he transfer all or part of his deliberative steps to the machine? Is
the rationality of the machine different from that of the lawyer?”
Luhmann wondered whether a computer and a lawyer have the
same function in an administrative system and if so whether
in principle one could be substituted for the other. “Or are their
functions and their contributions to decision-making different?
If so, are they contradictory, such that the lawyer must distrust the
machine, and vice versa?”121

Such questions about the nature of transactions in digital and
social space had arisen since the early 1960s, not only in general
administrative and legal terms but also as other areas moved on-
line, including currency trading,122 airline reservation systems,123
library cataloging,124 and supply-chain management in the retail

76

trade.125 Almost inevitably, the change added sociotechnical analy-
sis to the skills set of project managers. That would, at least, seem
to be the case given that even modest electronic automation pro-
jects had a way of turning into major reorganizations with some
regularity. The fundamental characteristic of technology and
technological change is as true here as elsewhere: technologies
are tools used by social actors (user groups, organizations) to ad-
vance their own interests, consolidate existing positions, or gain
additional influence over the course of events. The preoccupation
in the late 1950s and early 1960s with regulating traffic in digital
space had consequences not only for the formation of theory. It
also had a lasting impact on “operational education.” The cross-de-
partmental use of computers, which Niklas Luhmann found so
stimulating, allowed an insight into administrations and com-
panies that had previously been difficult to gain. If the computer
could become an unrivaled information system of management,
then the position of management probably changed with it. The
sharply drawn line between what was considered engineering
knowledge and concepts and observational routines that had
been inherent in management since the early 20th century began
to shift. The distinction between the figure of the engineer and
that of the manager became uncertain and fraught. As American
historian of technology Thomas Haigh has shown, some observ-
ers even assumed that transferring substantial administrative
procedures to the great archipelago of computers would give rise
to a new class of knowledge bearers. These “systems men” would
be sufficiently expert in both IT and business management to take
on positions of power in companies and other authorities.126

Most of the expectations that these systems men held for
the computer, for their own skills and competencies, and for the
world’s sociotechnical future in general proved to be exaggerated
and ultimately failed to materialize. But they did increase the

77

semantic market value of what came to be called a management
information system. Everything that was most important to cor-
porate management and operations was to be stored and analyzed
through this system. A management information system repre-
sented a container for all the knowledge possessed by managers
with a knack for abstraction, experience in business administra-
tion, and close contact with a computer. Established practitioners
of analog business administration were having none of it.127 Fur-
thermore, computer experts were uninterested in sharing their
career paths with IT-savvy managers, and corporate executives
ignored the naive attempts of systems men to seize power.

Nonetheless, at the beginning of the 1960s it was perfectly
in line with the expectations of companies to be able to provide
management with a basis for decision-making by outsourcing
management-relevant knowledge to the computer.128 Nor did it
prevent anyone from starting work on management information
systems, designing them, discarding them, renaming them, and
re-promoting them – regardless of what was meant by the term
management information system in each case.129 Later, sophisticated
management tools and enterprise resource planning systems
would emerge from this breeding ground. That would require
stable rules for computer operating systems and computer-based
operations of organizations as well as building data centers that
would serve as obligatory transit points for procedures and data.
For now, however, universal computing systems required flexible
traffic rules, traffic flows, and a range of operating procedures.
Powerful operating systems were a sine qua non. The guiding
principle for the organization of such computers was not divide
and rule, but divide and operate.

79

4	 Synchronizing

Around the mid-1960s, digital space developed a particularly
intimate relationship with the parts of the world that were or-
ganized within it. It is important to note that computer-based
organizations gained power not through digital representation,
but through digitally accelerated and extended interaction. To
prevent this interaction from degenerating into the computers’
preoccupation with themselves, the world in the computer had
to be synchronized with the conditions in the organizations
whose business had to be transacted. Organizations typically
have a keen sense for how to control implementation of their
plans.130 Digital space offered them controlled simulation of
planning, real-time monitoring, and logging by the computer
that would allow them to check results later. Nothing provides
a better illustration than NASA’s Mission Control Center, which
was established in Houston, Texas, in 1962 and equipped to the
teeth with IBM technology.131

“Houston” was an extreme model of the computerized mon-
itoring and control culture of the 1960s.132 The Mission Control
Center was set up to oversee everything for a series of spectacu-
lar space missions from planning and simulation to coordinated
monitoring of the long excursion to the moon and processing re-
ports of expeditions to the responsible authorities. It was a huge
effort. Take, for example, the installation of five transistorized
IBM cutting-edge computers, the worldwide network of radar and
radio stations, the army of highly qualified employees, and the
center’s enormous expenditure on media technology.133 Even in
the glare of the global television spotlight, the sociotechnical in-
teractions appeared highly credible and procedurally effective.134

80

To this end, the center had developed a complex internal organ-
ization and infrastructure that set completely new standards.
Houston emerged as a place where synchronization of the world
with the computer monitoring and control room played out in an
exemplary and forward-looking manner.135

NASA’s computerized setup was paradigmatic, even ep-
och-making, because it could claim to operate in real time through
skillful structuring of the computer system and its environment.
Spaceflight problems are extremely time critical. Unprecedented
velocities and forces require very short reaction times owing to
particularly serious consequences. All events that deviate even
slightly from the plan must be handled without appreciable delay,
that is, almost synchronously with their occurrence. Operation-
ally, this means responding in real time and minimizing the time
difference from the generation of data to processing and display
by the computers. That’s why the computer setup in Houston’s
control center was also designed with a real-time operating sys-
tem. However, as in all computationally intensive activities, the
ultimate goal of operational real time relies on selectively limit-
ing precision and varying speed. Approaching the desired imme-
diacy was done by sorting tasks and classifying them by urgency.
To this end, the center provided a complex structure, consisting of
a host of technical and procedural components. This structure en-
abled the problems of spaceflight to be distributed and delegated,
or timed and shifted. In this way, future problems were slated for
simulation and training, current problems for monitoring, and
past problems for reporting.

The tendering process for the new center’s computers had al-
ready made clear that the demand for computing capacity would
dwarf anything previously available. According to estimates, be-
tween five and nine large computers would have to be installed
to ensure sufficient and sufficiently reliable computing capacity.

81

Nevertheless, the need for equipment, software, and for human
resources was still massively underestimated by both NASA and
IBM, which was awarded the contract. Instead of the project’s
planned 161 computer engineers, more than 600 ended up work-
ing on it simultaneously, two-thirds of whom were assigned to
programming the operating system and the myriad of applica-
tions alone.136

The program landscape being created in Houston, called Ex-
ecutive, consisted of three main subprograms. At the center was
the Mission Operations Program System, which performed flight
path calculations, processed measurement data, monitored the
spacecraft environment, acted as backup for the on-board com-
puter, and calculated rendezvous maneuvers between different
spacecraft. This key program was supported by a program called
NETCHECK that monitored data flow and by the ANALYZER pro-
gram, which evaluated logged flight data after a mission.137

On the machine side, one computer was dedicated to the on-
going mission, the second served as a dynamic backup computer,
and the third was used for simulations. Later, a fourth computer
was added for simulating ground systems and a fifth for software
development. An IBM 1401, which had proven a solid data pro-
cessing machine, was used solely for input and output. Around
1965, this formidable infrastructure allowed Houston to “handle
10 times the data flow, have 100 times the computing power, and
275 times the capacity to present display information” at the start
of the Gemini spaceflights than had been the case at the Goddard
Space Center in Langley, where the Mercury spaceflights had been
monitored from 1959 to 1963.138

For real-time operations, NASA and IBM relied on the redun-
dancy of the monitoring and control system for the computers,
provided sufficient backup, purchased additional memory, and
accelerated both input and output with expanded capacity.139 By

82

the time the center was commissioned in 1965, the first three
IBM 7094s had already been upgraded to twice the computational
memory and five times the auxiliary memory. Real time gained
time by expanding machine memory.140 If the facility had not
been fixated on such a specific aim, it might have been described
as an all-purpose facility with great future potential. In Houston
the same kinds of complex technoscientific problems were dealt
with, and huge amounts of data from operations were sorted and
classified. The output provided a thoroughly calculated basis for
decision-making, as would be expected of any powerful computer
in the service of purely terrestrial large-scale enterprises.

It would take a very large computational effort to digitally
handle space travel. That much was evident. What was surprising,
however, was the fact that the operations and communications
going on around the computers also had to increase enormously.
Countless installations assured the proper temporary storage, re-
arrangement, channeling, and distribution of information, so as
not to burden the computer system except in selected cases (or for
an emergency). Viewed in this light, the control center was a mas-
sive, highly intelligent sorting facility in the service of the com-
puter center. What proved too complex or too voluminous for the
computers to process immediately floated through the back-end
services of the flight control room’s analog world until the task
was reduced in complexity and a computer was free to work on
it. It was the conventional part of the facility that made good the
strategic claim to real-time computing by keeping complex infor-
mation away from the computer.

Architecturally, the control room favored a showy, even the-
atrical layout. The consoles were grouped by function and stag-
gered according to a fixed hierarchy. Controllers who dealt with
engines and fuel, that is, with the thermodynamics of space travel,
sat at the front. Right behind them sat half a dozen electrical engi-

83

neers who took care of power supply, data, and communications.
The third row was responsible for organizational matters and
command. Finally, in the fourth and top row sat senior officials
responsible for liaising with dignitaries and the public: the direc-
tor of flight operations, the two representatives from NASA head-
quarters and the Department of Defense, and the mission’s press
officer. The room was closed off by a pane of glass, behind which
was limited cinema-style seating for 74 invited guests.141

The strict spatial arrangement of the control room did little
to ease navigation of its technical complexity, even for those who
worked in it. Accordingly, NASA produced and repeatedly updated
its Familiarization Manual, already a good 150 pages long in 1967,
which described the entire infrastructure of the Mission Control
Center for the “orientation/indoctrination” of the employees, as
stated in the preface.142 The manual was the pinnacle of a whole
family of manuals on problems of simulation, operation, and
maintenance of technical systems that secured communications
between astronauts, ground personnel, and flight control; pro-
vided links to rescue ships, aircraft, television channels, and the
government; and supported the interaction of computers, print-
ers, teleprinters, radar stations, and projectors.

To handle temporary storage, as well as the classifying and
distributing of tasks, a complex technical and personnel organi-
zation was created near the mainframes. Only a small selection
of these problems found their way into the computer system;
everything else was examined and processed by ground person-
nel at consoles in the control room. Each flight controller worked
his way through the detailed flight plan prepared for his area of
responsibility. At his back was a series of manuals in ring bind-
ers that could be consulted, supplemented, and corrected at any
time; in front of him were log entry forms, an ashtray, and a slide
rule. His headset enabled him to connect to a team of engineers

84

sitting outside the control room for support with tasks that were
too large and too complex to be solved single-handedly at the con-
sole. When unexpected events occurred, the flight controllers re-
lied on the knowledge and experience of the back-room staffers.
The manual describes endless halls of offices and meeting rooms
where the invisible control center staff pored over such assign-
ments.143

The individual flight controller’s sorting system at the con-
sole also helped to restructure the rigorous work schedule as
needed, obviating the use of computing power. The system spec-
ifications and supplementary tables on emergency procedures
stored in the ring binders would be calculated and checked long
before a mission. Preparatory work could be called up at any time
for special situations or to make changes to the flight plan. But
the potentially continuous stream of messages, questions, and
answers on voice radio also facilitated emergency responses. This
air-to-ground audio loop followed a highly structured pattern. The
steady communicative interactions were distributed over differ-
ent channels into which each flight controller could listen with
his headset, knowing that everything spoken during the space-
flight was recorded on tape and would also be transcribed later.
The console of a flight controller was not unlike a mixing console.
Here, a specialized program adapted to the task and situation at
hand was assembled and combined with documented routines.

A selection of relevant data, freshly processed by the data
center, was transmitted to the flight controller on his own screen.
Here, too, various time scales, formats, and speeds could be iden-
tified. The small TV screen on the console continuously displayed
images captured by video camera from the mainframe comput-
er’s cathode ray tube (CRT) screen. The process was very analog.
The data themselves might be numbers or even a single moving
point. For the controller to make sense of the unadorned informa-

85

tion, a physical slide that contained formatting information such
as axis labels or column and row headings was projected over the
video camera, and the result was sent to the controller’s console
screen as a mixed image.144 If the flight controller wished to con-
sult a colleague, he could send the mixed image to the colleague’s
console screen. If the controller needed more time, he could re-
quest a printout on paper by pressing a button. The printout was
then sent to his workstation from the computer center via the
pneumatic tube system. Now he could study the table in relative
peace, compare it with older copies, or if he had questions, for-
ward the table to the team of engineers outside the control room.
When needed, the team sent back additional documents, also by
pneumatic tube, to be discussed with the flight controller over in-
ternal telephone lines.145 As soon as the situation was clear again,
an instruction could be forwarded to the spacecraft via the flight
director on duty and the capsule communicator responsible for
communication with the astronauts. What they received were
terse instructions for handling a problem.

Tasks could thus be distributed, procedures sequenced, and
tasks could be prepared or postponed to the future. Most of the
buttons on the consoles in the control room were wired to pneu-
matic tube and call addresses precisely for the work of postpone-
ment. At the same time, sufficient synchronization had to be en-
sured. A variety of provisions saw to it that outsourced, postponed,
and distributed work could be seamlessly brought back into the
flight plan and be ready for real-time intervention on time.

A central system clock provided the temporal framework nec-
essary to synchronize all procedures and subsystems. Real-time
monitoring and control depends critically on a stable system
time. In Houston’s Familiarization Manual, few words occurred as
frequently as the word time. The reference for system time was a
signal disseminated by radio from the National Bureau of Stand-

86

ards as Greenwich Mean Time. In Houston itself, this nationally
assured reference to universal time was locally anchored and
distributed to all other functional units by an elaborate timing
subsystem. The timing system consisted of “master instrumen-
tation timing equipment, [a] countdown processor, two sets of
relative time accumulators, six sets of dual stop clock equipment,
two serial decimal time converters, three timing signal distribu-
tors, time display and control modules, a timing interface unit,
and wall clock equipment.”146 Synchronization of monitoring pro-
cesses, when needed, was referenced to the control center’s highly
stable system time, which by no means excluded the supplemen-
tary use of wristwatches and handheld stopwatches.

A second synchronization was done via voice radio between
the capsule and the ground station. In the early Gemini missions,
responsibility for this task was passed from one terrestrial re-
ceiving station to the next and involved constant adjustment of
frequencies and repeated link checks. Only stations that theoret-
ically had visual contact with the spacecraft also had voice com-
munication with the astronauts. The result was alternating bursts
of communication and radio silence, which affected other chan-
nels. When, in the second half of the 1960s, all radio communi-
cations began to be handled the same way as data transmission
via fixed data lines – using time-division multiplexing – interrup-
tions diminished and little of this alternating pattern remained.147
Moreover, transcripts of various space missions indicate that ra-
diotelephony was becoming increasingly more continuous. It was
more standardized and provided flight controllers with a secure
auditory structure to which further radiotelephony channels and
tape recordings could be added.148

The third synchronization thread was visual. All flight con-
trollers, as highly expert viewers, kept an eye on a common three-
part display at the front of the control room. They understood that

87

the real-time coordinates of the spacecraft referred to its current
position in space, in time, and with reference to the flight plan.
This position and the further flight trajectory were continuously
recalculated in the computer and “plotted only a few seconds be-
hind” via an “Eidophor” video projector onto the center screen
before the rows of consoles. This allowed the flight controller to
follow it at all times.149

This image, like those on the screens at the consoles, was also
created by overlay. Slides containing formatting reference infor-
mation, and video images of current flight data recorded from
the screen as naked points or numbers, were optically combined
into a readable video image. This image appeared on the middle
and largest section of the three-part screen. To the left and right
were two smaller projection surfaces angled inward, like altar
wings. A frieze above this triptych comprising nine illuminated
displays showed the most important numerical parameters of the
current mission. Whereas the left screen of the triptych typically
displayed the current page of the flight plan via an overhead pro-
jector, the right screen displayed video images. Here the control-
lers were shown live images of the launch of the carrier rocket, for
example, photos taken from inside a spacecraft, or the “live broad-
cast” on 20 July 1969 of Neil Armstrong’s long-awaited exit from
the lunar module.

Mission Control Center’s picture screen combined many, very
different sources and media. This created a multimedia imaging
system that synchronized the monitoring and control setup both
internally and externally in such a way as to conflate beginning
and end, and inside and outside worlds. At first sight, the Houston
facility recalled the closed worlds of the subterranean command
centers designed in the 1950s for nuclear first or retaliatory strikes
that had long become a fixture in film and television by the 1960s.150
But Houston’s imaging system was essentially much more com-

88

plex. A good illustration is the most spectacular live TV broadcast
in history. On Christmas Eve 1968, a global TV audience watched on
their own window to the world (and flight controllers on the right-
hand screen in the control room) as the crew of Apollo 8 snapped a
photo of Earth with a video camera and read aloud a Reader’s Digest
version of the story of creation from Genesis.151

The procedure was tricky, because the astronauts’ camera
had no viewfinder. Earth had to be captured in (delayed) radio
contact with Houston, where the image could be seen but the
camera could not be moved. Following some degree of success,
astronaut Bill Anders said that he hoped everyone was enjoying
the picture “that we are taking of themselves.” As if doubting an-
yone could really grasp the crazy coincidence of extreme distance
and simultaneity, the artistic commingling of inside and outside,
he added: “You are looking at yourselves at 180,000 miles out in
space.”152 No one may have been waving,153 but this satellite view,
produced jointly by Mission Control and the spacecraft, enabled
an extraordinary, collective mirror experience, the ultimate in
synchronization.154 At the Mission Control Center, a select group
of viewers looked through the glass panel in front of them at the
flight controllers, who themselves were looking over the edge of
their screened consoles at the right side of the giant display. Like
millions of TV viewers, they saw what the Apollo 8 astronauts
could see and record of the world from inside the spacecraft – so
long as all the signals were transmitted correctly, the spacecraft
was properly positioned, and the camera was held correctly with
the help of the controllers.

This was real-time operation at its best. The computational
real time was overlaid and complemented by combined media
and simultaneous communications. The image of Earth appeared
on the right side of the giant triptych, coordinated with the flight
plan, which was displayed on the left side. It provided evidence of

89

the real-time positional information on the center screen and on
the small data displays atop the triptych.

As a result, both parts of Mission Control in Houston were re-
dundant – the data center with its battery of mainframes and the
control room with its multiple displays and perspectives. Most
important, the parts were complementary. For while the data
center was expanding its computing capacity, memory, and data
flow, the control room focused on preparation, distribution, com-
munications, and recording. This division of labor was constantly
changing during the 1960s, for example, by shifting computing
capacity (and intelligence) into the spacecraft and by bringing co-
ordination of communications into the computer. Houston had
begun to move the computational aspect of space flight as well as
monitoring and control into the computer, and with Apollo 8 it

Figure 12: “Real time” in Houston: the Mission Control Center’s view
of the television image of the Earth rising behind the moon, which
Apollo 8 transmitted to Earth.

90

had brought the image of the blue planet as “Spaceship Earth” into
the control room.155 The space center became a model, even an ob-
session, for people who liked to monitor, control, and command.
Most significant in terms of the development of digital space was
the concept, demonstrated here in the extreme, of closely syn-
chronized electronic simulation, monitoring, and reporting, be-
cause it managed to bring together the world and the computers,
space and the spaceship, and the astronauts and the global tele-
vision audience in Houston’s multimedia control room, all at the
same time.156

91

5	 Production and setting up

The political and cultural upheaval of the late 1960s appears to
have had little impact on digital space.157 Programming languages,
operating systems, application programs, and data centers turned
out to be useful and survived numerous endurance tests, and not
only at Houston’s space control center. The universal machine,
which could be further expanded for special tasks or run with
new programs, also proved its worth. The cost–benefit ratio of the
computers improved significantly, and time-sharing had been
demonstrated with many terminals, users, and programs. Even
real-time processing was becoming established, at least as an ex-
pectation. Much of what IBM had envisioned at the beginning of
the decade had actually been achieved.158

Data center programmers and operators now wore their hair
somewhat longer and left their ties at home, but that didn’t mat-
ter much.159 Inhabitants of digital space were able to negotiate
old rules as well as invent new ones. The growth of the industry
was almost unstoppable. In 1968, the number of computers in
the United States alone is said to have risen to over 70,000. This
expansion pleased those selling computers, who still wore ties.160
But the future also looked inviting for bearded techies in T-shirts.
It afforded room for ever more, possibly even radical, proposals.
The question of how to further arrange digital space could be ap-
proached with imagination. The far-reaching technical upgrade
underway in companies, universities, and the public sector of
industrialized countries permitted broad scope for creative pro-
posals and audacious solutions in a novel mix for practical im-
plementation. It was of course sometimes difficult even for com-
puter professionals to maintain perspective. Nothing was easier

92

than coming up with new suggestions and new forecasts. These
were then presented with élan at the next computer conference,
in the Harvard Business Review, or a weekly magazine, thus contrib-
uting to the future design of digital space.161 It was a time of unbri-
dled confidence. Somehow, it would be possible to generate work-
able, generalizable rules for production and installation from the
various proposals. The development of the computer industry up
to that point gave no reason to think otherwise. In particular, it
was easy to extrapolate or to extend growth with a reference to the
future, namely, that a new “generation” of computers, programs,
and peripherals would soon be coming to the market that would
furnish digital space with even more sophistication, lavishness,
and comfort.162

The tension between exaggerated expectations and apparent
success was admittedly thrilling. But it wasn’t necessary to strictly
differentiate success and failure. Both could be integrated into the
rapidly expanding space of computer activities and the prepara-
tory work required. When conventional procedures were moved
lock, stock, and barrel (as they often were) to computers, some
things did not work. Nevertheless, the move could usually be
interpreted positively. Each project’s losses and gains went hand
in hand. Because one draft followed another, and each plan was
quickly followed by another, criteria for evaluating them were in
flux. Thus, people were generally correct in talking about the fu-
ture of digital space, even if not always at the same time and not
always for the same reasons. The fact that this ended neither in
crisis nor in unemployment was due to the fact that the large and
small questions raised by the prospect of computer technology
were continuously met with creative rethinking.

93

Production

In 1961, IBM drew up a comprehensive plan for data processing
products. Quite naturally, this strategy paper took processors as
its starting point.163 They were to form “a single compatible fam-
ily” regardless of performance class.164 From the smallest to the
largest, the plan was to manufacture all machines according to
uniform principles. Together with the expansion options availa-
ble for each machine, IBM’s plan would result in a seamless range
of computing power of different sizes. IBM made this computing
power describable with the so-called “processor point.” Each pro-
cessor point corresponded to one dollar of monthly leasing in-
come. At the end of 1961, 29 million of these processor points had
been installed at customers’ sites; by 1965, 79 million points were
expected, and by 1970, more than 162 million points.165

The section of IBM’s strategy paper devoted to software was
somewhat less clear-cut. Here, too, the idea was to apply the prin-
ciple of compatibility and create clarity. The task group envisaged
a maximum of three programming environments, a single system
for input and output control, and a greatly reduced set of applica-
tion programs. The entire software offering would be divided into
(only) three “configuration classes” and associated with a family
identity over all processor types.166 Consequently, the processor
also influenced decisions about software. Insofar as possible, the
work of local setup was interpreted as a “natural consequence” of
a customer’s choice of processor.167

In 1964, the decision to prioritize the processor received mas-
sive support from IBM’s System/360. Intended for all IBM proces-
sors, the System/360 operating system constituted a proprietary
computational compatibility constraint. It was even hinted at
in the advertisements for System/360, which showed processor
cabinets and peripherals arrayed in a circle like menhirs at Stone-

94

henge, waiting to be used. IBM wanted to be well positioned in
all directions. “You choose what you need now. You add new com-
ponents when you need them,” the brochure read. The company’s
promise was that System/360 would solve today’s problems and
could be extended to solve tomorrow’s.168 The most sophisticated
of all operating systems to date made the company’s proces-
sor-centric strategy operationally future-proof.

Support for the decision to place the processor at the center of
the company strategy also came from outside. In 1965, Gordon E.
Moore, a chemist and physicist working at Fairchild Semiconduc-
tor, had been thinking about the economics of integrated circuits.
He noted that the number of functions that could be integrated on
a silicon chip had doubled every year since 1959. Moore reasoned
that by 1970 the manufacturer’s cost for the least expensive chips
would be only 10 percent of the 1965 cost, a prediction that be-
came known as Moore’s law. While it could not foresee the effect
of ever-increasing processing power on the development of com-
puters as a whole,169 Moore’s law – like IBM – nonetheless tied the
future to the processor. The “law” radically reduced the complex-
ity of computer development. To be guided by it meant that home
computers, digitally monitored automobiles, portable telephones
and – provided a suitable display could be found – electronic
watches were no longer the mere dreams they were for Moore.170

Making the processor the cornerstone of the company’s strat-
egy was a far-reaching policy decision on the part of IBM. Thanks
to compatible processor lines, any issues encountered by the sales
staff and the technicians who had to get the machines up and
running could be solved in the same way for all IBM computers.
With a single set of rules, computers could be adapted and up-
graded to meet specific needs. On the other hand, IBM accepted
that the competition could more easily predict what IBM had in
mind, where its weaknesses lay, and where, if necessary, the com-

95

petitor’s own products could be positioned advantageously.171 The
strategic focus on the processor also meant that much that did not
directly concern the processor’s architecture and performance
was sidelined in terms of attention economics and dealt with by
specialists with narrow, if not marginal, interests. Implications
were evident in the processors, the networking technology, and
the software.

First, when it came to processors, competitors could only op-
erate at the lower end of IBM’s range. For a long stretch of the
1960s, the performance of a top-class IBM processor could not
be surpassed. Competing companies had no choice but to design
more basic computers. IBM had regarded this as a less attractive

Figure 13: The computer as an all-round solution for a variety of con-
temporary problems.

96

option because it had been assumed since the early 1950s that
computer performance increased as the square of the computer
price, and so large, expensive computers provided disproportion-
ately high computing power.172 Nevertheless, the Digital Equip-
ment Corporation (DEC) had already assembled a first minicom-
puter from transistorized circuits in 1960 and equipped it with
a punched tape reader, light pen, teleprinter, and CRT display.
The Programmed Data Processor (PDP) combined logic circuits,
which DEC had previously used to make digital controllers, into
a computer that offered much lower performance than any IBM
machine. The low acquisition cost, short response times, radically
simple collection of commands, and direct operability made the
DEC devices, which initially were not supposed to be called com-
puters, an extremely successful niche product. Users had to pro-
gram anyway. To program on an affordable machine without con-
stantly being reminded by a computer center or an IBM operating
system of the difference between what was allowed and what was
not allowed was quite attractive. In particular, DEC’s PDP-8 min-
icomputer, available since 1965, added a veritable archipelago of
tens of thousands of small, independently programmable islands
to digital space.173 Such a development had not been seriously an-
ticipated by IBM strategists in 1961.

Second, IBM’s strategy also completely ignored connections
between computers. In the world of mainframes, terminals were
indeed the end of the line. In the IBM computing world, network-
ing was limited to connecting the periphery (memory, magnetic
tape stations, punched card readers, printers, monitors, and key-
boards) to the center (processor).174 For large transfers of data or
programs, the physical parcel post was used for transporting tapes
and punched cards conventionally to the nearest data center. In
1966, an American magnetic tape standard was developed to fa-
cilitate the exchange of information, even between computers

97

from different manufacturers.175 If, on the other hand, data had
to be transmitted electronically, ordinary telephone lines should
suffice, and the respective telecommunications providers were
expected to see to it themselves.176

Third, as it turned out, IBM’s uniform operating system strategy
very quickly ran into difficulties. No sooner had the strategy been
introduced than the “uniformity” was lost, because the system had
to be constantly expanded and adapted to special customer needs.
By the end of the 1960s, there was a rash of announced but not
yet delivered versions and delivered but not yet fully functional
add-on modules of what had once been touted as an unproblem-
atic all-round solution.177

Basic strategic assumptions and other apparent fundamen-
tal things previously taken for granted began to unravel at IBM,
and among competitors and customers. The situation became
complicated, and important new issues arose for hardware
and operating systems. A crisis appeared to be looming.178 But
computer professionals had no time for crises. They might rail
against the nonconformism of programmers,179 lament the fatal
consequences of unreliable software,180 and warn that the appe-
tite of operating systems for computing capacity would not end
well.181 This was not a crisis. The processors worked, and with
sufficient patience, software could be adapted to the needs of
the users. Of all 575 presently known articles published by the
Association for Computing Machinery between 1967 and 1973
in which the term software appears in the abstract, only 15 also
feature the word crisis in their abstract. Just one of them refers
explicitly to a “software crisis,” but puts the term in qualifying
quotes. The title of the article, on the other hand – “Machine-
Independent Software” – forthrightly announced the topic of
particularly intensive research at the end of the 1960s. Machine-
independent software was about designing programs in such

98

a way that they could be transferred from one computer to the
next.182

For IBM, machine-independent software was a matter of
course, but only when it came to IBM machines. The company’s
processor family was held together by operating systems that all
supported IBM programs for that very reason of “independence.”
The point of the compatibility was to ensure that IBM custom-
ers remained IBM customers if they wanted to purchase a more
powerful machine. Everything they had produced for their pre-
vious machine in terms of code could be transferred to the new
machine. At the same time, machine-independent software was a
nightmare for IBM. In the 1960s, Watts S. Humphrey was a mem-
ber of the company’s management staff responsible for software
development and systems engineering. Humphrey vividly de-
scribed the uproar at IBM when a competitor positioned its own
product line not at the bottom of the processor range, but in the
middle of IBM’s hardware portfolio. In 1965, the Radio Corpora-
tion of America (RCA) announced its RCA Spectra 70. The electron-
ics giant, which had always focused exclusively on equipment,
wanted to build a machine on which IBM software could be easily
installed.183

This was a frontal attack on IBM’s hardware franchise and was
bound to have serious consequences for software production. At
IBM, people only wrote on blackboards, which were erased after
each session. Nothing, absolutely nothing, was allowed to leak
out. If software and data compatibility were to apply not only to
IBM machines, but to all computer models, IBM’s entire business
model would unravel. For the first time, a competitor had adapted
to IBM’s fleet of processors not by circumnavigating, but by sail-
ing alongside. RCA’s new system would support its 3301, 301, and
501 computer programs “and other systems,” according to an RCA
promotional brochure. Instructions, formats, and character codes

99

would be identical to those of IBM’s System/360. And as if that
didn’t tell the whole story, RCA corporate strategists reiterated for
the record that RCA customers would soon be able to “put [RCA
systems] to work side-by-side with your other systems…You can
conserve your heavy programming investment.”184

Thus, RCA also celebrated the primacy of the processor, but so
radically that IBM software became mobile in a most unwelcome
way. Even though RCA had made its presence felt in the past with
grand promises that remained to some extent unfulfilled, IBM had
to reckon with RCA’s success.185 Should application programs be
more tightly coupled to machines in the future, perhaps even by
cryptographic means, or would they have to be sold separately?186
The attack on IBM’s business model thus transpired via hardware.
A spirited debate ensued about what software actually was, and
whether it could be leased, licensed, or sold as a separate product.
Whether software could be properly evaluated at all was just as un-
clear as what it should cost. Could future owners of an RCA Spectra
70 machine be asked to pay for the use of IBM software without
knowing what loyal IBM customers had paid for it and what they
could do with the programs? Somehow, the well-packaged bundle
of equipment, code, and service had to be untied, and its contents
repackaged as commercially distinct products. In June 1969 IBM
announced that it would no longer market software and hardware
together.187

This “unbundling” decision is considered the birth of the inde-
pendent software industry. Hundreds of new companies emerged
whose sole purpose was to adapt software to fit the specific needs
of customers who had already purchased hardware. New priori-
ties and the dynamics of rapid change reconfigured digital space.
Ongoing deployments had revealed more diverse requirements
than had been foreseen. Furthermore, it was clear that translating
everyday interactions into application programs was easier than

100

trying to implement them using specialized hardware. Unbun-
dling was a veritable gold mine for all who had previously worked
with software at a hardware manufacturer and were now seeking
their fortune in their own dedicated software company.

Software enjoyed not only a production boom in the early
1970s but also a conceptual change that went much deeper than
the question of sales formats. If software was to become more
versatile and independent of hardware, then (and primarily) the
difference between software and hardware had to be clear. In
other words, people had to be able to understand which problems
were more likely to be solved by circuits, cables, and (in the case of
printers) spinning chains, and which were arguably better solved
using flowcharts, command sequences, and programs. The second
requirement was to be able to assess both hardware and software
performance. This, in turn, required software development to
become generalizable and more abstract, perhaps even formally
specified. This task was most likely to be accomplished by groups
concerned with developing programming languages, such as
Working Group 2.1 of the International Federation for Informa-
tion Processing (IFIP), founded in 1962. IFIP had set itself the task
of systematically revising the possible applications of Algol 60, a
widely used programming language. The working group was now
in the process of developing a precisely defined programming
language that could be rigorously evaluated and expanded as re-
quired.

To develop a programming language that could be used on dif-
ferent computers, the IFIP working group concentrated on syntax
(the form of the code) and tried to reduce the semantics (what the
code means) to a concise core language. This approach required
many abstract preliminary decisions, whose fitness for purpose
was debatable. The range of opinions within the working group
under the leadership of Adriaan van Wijngaarden grew larger

101

and larger, and a final report with concrete results of the body’s
work became more and more distant. Fundamental contributions
from individual members could hardly be reconciled with each
other. One proposal followed the next. It was no longer possible
to keep track of the working group’s output. The revised report
on Algol 60 (1962) was succeeded by proposals for a new language
(1964) as well as a proposal for an introduction on the goals of the
working group (1965) by Peter Naur. Also in 1965, Gerhard Seeg-
müller presented a proposal for a basis for a report, Niklaus Wirth
immediately provided a proposal for the entire report, and van
Wijngaarden commented more generally on questions of design
and the description of a formal language. Barry J. Mailloux wrote
a new design proposal in October 1966, John E. L. Peck a second in
May 1967, followed by a third later that year. A penultimate and a
final draft report appeared in 1968. But even before the Algol 68
group could adopt the final report, some of the most radical mem-
bers resigned in protest and published a minority report.188

Computer historians have incorporated these events into the
discourse on the “software crisis”189 and overlooked the fact that
the Algol 68 proponents were hardly pursuing different goals than
those who opposed it. Both camps were concerned with formali-
zation, assessment, and the creation of rules. Such abstract goals
produce many and far-reaching conditions. The mutual accusa-
tions between the working group and its dissidents ranged from
excessive formalism to negligent pragmatism, from inefficient
obsession with detail to logical inconsistency and little relevance
to practice. The official report nonetheless thanked the leavers
somewhat understatedly for “whole-hearted cooperation, sup-
port, interest,” and even “violent objections.” The minority report,
on the other hand, complained of obvious failure, mannerisms,
inaccessibility, “grave” deficiencies, and the uselessness of Algol
68 as a programming tool.190 The goal of the former, to develop a

102

tool that could be used to write complex programs in an elegant
way, was confusingly similar to the goal of the latter, to develop a
programming language that was as clean as possible and easy to
evaluate.191 In both cases, the question was how to free program-
ming both from its artisanal origins and from electrotechnical
specifications. Indeed, the controversy over Algol 68 could be seen
as a hardly surprising sign of growing pains as “computer science”
began to emerge from the fraught nexus of applied mathematics,
electrical engineering, and physics.192

In 1972, the minority report’s spokesman, Edsger Dijkstra,
gave a Turing Award speech desingenously titled “The Humble
Programmer.”193 He began by recounting a conversation he had as
a young student in Amsterdam in 1955 with Adriaan van Wijn-
gaarden, the later spiritus rector of the Algol 68 Working Group.
According to Dijkstra, the conversation was about whether pro-
gramming was a respectable profession and where the respecta-
ble knowledge was to be found that could support the intellectu-
ally demanding work of programmers. After listening for a long
time, van Wijngaarden asked Dijkstra whether he himself would
not like to be among those called to make programming a respect-
able discipline.194 Anecdotes are no less adaptable than software.
Both can be applied to suit the situation. In the case of Dijkstra,
the Algol 68 rebel, the anecdote served as a hagiographic valida-
tion of what self-confident computer scientists in the early 1970s
had just begun to promote using the redundant term structured
programming and the oxymoron software engineering.195

103

Setup

The development of digital space in the 1970s and ideas about
how this development could be generalized in a controlled man-
ner broke with the primacy of the processor, which IBM had opted
for in 1961. The range of hardware and software became more
differentiated, while the rules became more abstract and the
procedures more generic. That made it possible to promise ever
more with regard to machines and programs and to “anticipate”
demand. However, it also became apparent that substantial setup
was required to bring such a proposal to the point where it even
came close to meeting customers’ needs and where it made sense
for them to buy a computer, although they’d still have to wait for
the next software release or for an additional device.

The following sections examine this work of setting up in the
context of three relocation projects. All three projects originated
in German-speaking countries of the early 1970s. It would be easy
to find a similar triad in, for example, Spanish- or French-speak-
ing countries. More important is to mention the project goals and
scope of action: one project pursued a mundane goal in tourism,
the second an ambitious one in global banking, and the third a
controversial one in national policing. To structure a new field of
action in digital space, all three projects had to translate a local sit-
uation into writable software and installable hardware, or adapt
available software and hardware to a specific situation, and vice
versa. Consultants, programmers, managers, engineers, insiders,
and experts were all required for the massive preparatory effort.

The first project had a very clear starting point. In the fall of
1968, the city and spa administration of Bad Wörishofen, Bavaria,
commissioned the Institute for Management Consulting and De-
velopment Planning and the Geographical Institute of the Tech-
nical University of Munich to prepare a municipal development

104

plan. The project envisaged reorganizing the “management style”
in tourism management and, for this purpose, setting up a “spa
information system” for “60,000 spa guests and 1.2 million over-
night stays in 260 spa establishments” every year.196

The corporate planning experts were not concerned with the
question of how the spa’s water treatment (developed by naturo-
path Sebastian Kneipp) should be applied, nor with the question
of how people – whether healthy or sick – should live.197 Rather,
as reported by Bernd Bienek and Volker Kreibich in the IBM-Nach
richten of 1970, the “planning, implementation and control of
a long-term development concept” for the Kneipp spa made it
“imperative that a comprehensive information system be estab-
lished.” For, under the conditions of increasingly differentiated
tourism markets, “conventional management” of operations
through “decisions based primarily on experience and sentiment”
was failing.198

To respond to a rapidly growing and increasingly diverse cli-
entele, an information system was needed to analyze their needs,
an expanded product line to treat them, and a new way of making
decisions to guide operations.199 According to the experts, how-
ever, sufficiently specific management information could only
be provided with the help of electronic data processing, and an
information system would simultaneously help to rationalize
various administrative processes. The project was not described
in precisely these terms. It was simply based on the consensual as-
sumption that the clients’ requirements, travel motives, and pat-
terns of consumption had changed considerably, and that people
therefore expected a more customized offering.200

The rationale for moving the spa’s traditional administration
into the electronic space of actionable information for manage-
ment and marketing was thus established. But how was the move
to be accomplished? In the summer of 1969, an “analysis of the

105

previous guest registration system” and the “spa statistics and spa
tax accounting based on it” was conducted. Data from the official
registration form that guests filled out on arriving at the hotel and
information from each service was forwarded to the spa adminis-
tration. Analytically, procedurally, and argumentatively, this was
a perfect starting point for operationalizing a new information
system. Forms also reduce complexity, clarify relationships, and
structure procedures. They were the substrate of the spa admin-
istration’s previous analog information system and easy to trans-
late into digital procedures.

The management consultants proceeded step by step. By trac-
ing the path of the completed registration form through the ad-
ministration’s processing mills, they simultaneously generated
a list of weak links, a catalog of possibilities for expansion, and
a structured translation program. The description of the “tradi-
tional information system” became an assessment tool for the old
program and a reference for the new one. Anything in the previous
reporting system that indicated inefficiency or poor performance
was catalogued. That included the frequent need to copy the con-
tent of the forms. A municipal official messenger’s need to carry
forms through the small town and guest departures indicated by
“scratching out” in the annual gathering of information for the
state statistics were noted with particular relish. Bienek and Krei-
bich were likewise taken with the crude distinction made in the
guest statistics between “domestic guests” and “foreign guests.”201

Moving the Bad Wörishofen spa administration into digi-
tal space was not a revolutionary act. “The most important basis
for this system is still the registration form [Meldeschein],” stated
the 1970 report, adding that it had been made more meaningful
by the addition of a short questionnaire and could be used at the
same time as a “punch form [Ablochbeleg].” The decisive factor was
that the registration slip was now prepared for transfer to a “guest

106

master punched card” and that all data could be transferred to
punched cards by the administration with the help of the IBM 29
card puncher.202

Only now did things start to simplify, namely, with regard to
spa tax accounting and spa card administration. Hoteliers probably
had mixed feelings about the progress made. The delivery of spa
cards and “the daily collection of the spa tax by the municipal mes-
senger” were definitely things of the past. In addition, the new pro-
cedure had the invaluable advantage that the spa administration
could set up a monthly collection of fees “by direct debit from the
tourist accommodation’s account.” The old registration form from
Bad Wörishofen had found its way into the Bavarian banking sys-
tem after being translated into an extended guest master card – and
to a computer in the state capital. Once a month, a System/360 ma-
chine in the IBM computer center in Munich generated all the lists
needed to calculate the spa tax. These lists were sent to the tourist
accommodations and read as itemized accounts.203 At the same time,
the computer center provided monthly operating statistics on hotel
guests, sorted by gender, age, birthplace, group structure, frequency
of visits, means of transportation, reason for stay, and occupation.
Even the costs for calculating the service statistics were shown “and
debited when due” from the service’s account. Spa guests hardly
needed to do anything different than they did in the past. But the
spa’s registration system was turned upside-down organizationally:
collection of the spa tax was automated through cashless payment
transactions; guest data were recorded on punched cards, monthly
operating statistics were compiled, and the costs of the computing
time incurred were distributed among the services. The debit slips
and bank lists, like the invoices and calculations, were generated by
the computer in Munich.

In this project, the original aims of development and ration-
alization were to some extent pushed to the background. The

107

main advantage of the computer solution, as Bienek and Kreibich
wrote in the IBM-Nachrichten, was “not in financial savings, but
in information gain.” After all, the system was expandable, espe-
cially since there was now an IBM System/360-20 – IBM’s answer
to DEC’s successful minicomputers – in neighboring Kaufbeuren.
By way of reassurance, the experts informed their clients that they
would soon be drawing a random sample from the guest punched
card index and conducting detailed interviews with 2,000 guests.
For this purpose, the computer supplied “a list of target persons,
punched cards with names and addresses,” and punched cards
“containing all the data from guest cards along with short ques-
tionnaires for monitoring the interviewers.” The spa guest survey
had become part of the overall information system of the tourist
community. The system could now be continuously expanded,
for example, to include an electronic accommodation service or
to develop a guest address card index. One even dared speculate
how tourism might develop over the long term. Which brought
the project back to the original objectives after all.204

The second example of a large-scale project setup in digital
space had goals similar in the abstract to those of the project in
Bad Wörishofen, yet was infinitely more ambitious. In 1969 the
Union Bank of Switzerland (SBG) decided to put its information
system on a completely new footing. This seemed the obvious
thing to do for a bank that covered all facets of the financial busi-
ness, that was growing rapidly, and that wished to support an
increasingly diverse clientele and an ever broader range of busi-
nesses. SBG had been gaining experience with computers for al-
most 10 years. Its coffers were full to bursting, and the financial
sector was booming. Loans, stock exchange transactions, mort-
gage administration, foreign exchange trading, and international
payment transactions for companies and private customers of all
sizes were now to be handled in digital space. That meant signifi-

108

cant amounts of money and personnel, many customers, and an
overwhelming number of transactions.

In the world of banking, as in the world of space travel, much
of what goes on is time-critical.205 Union Bank Information System
Concept (Ubisco) was the name given to the project that would
move the bank away from time-delayed batch processing to a
real-time online system. Using fully integrated data processing
in real-time mode to be implemented in two project stages, the
bank wished to record all forms of its business. The technologies
to be employed also happened to be among the finest available for
spaceflight, the military, and sophisticated research.206

Initial trials with selected transactions on brand-new UNIVAC
494 machines had shown promising results in 1969 and 1970.
Taking a look at what the competition was doing also provided
SBG management with strong support for its project.207 SBG knew
how computers could be used for banking and was confident that
it could share this knowledge with the top-class computer manu-
facturer Control Data Corporation (CDC) in a joint project.208 CDC
specialized in scientific computing and was working for a major
bank for the first time. SBG tried to minimize the obvious risks
through contractual provisions, but the project failed neverthe-
less. Between 1974 and 1980, Ubisco existed exclusively in law
firms and the courts.209

Exactly what caused Ubisco to fail is not easy to determine.
The dispute between the project partners ended in an out-of-court
settlement. One problem was the transaction-oriented operating
system (TOOS). TOOS was supposed to operate in connection with
a database. In addition to the usual operating system tasks, it also
contained a communication handler, a database manager, a trans-
action manager, and a journaling system to log all operations.
CDC began to build this edifice on the latest in-house operating
system.210 However, in the middle of the development work, CDC

109

decided to fall back on an older, proven operating system that
was also suitable for real-time computing. TOOS now had to be
rewritten, which not only meant a huge amount of work but also
resulted in structural limitations. CDC had obviously erred in its
choice of operating system.211

Another probable contributor to Ubisco’s failure was the huge
work of translation into the application programs. These were
developed by the bank itself owing to the sophisticated nature
of bank-specific procedures. However, the bank quickly fell be-
hind schedule. And no wonder. Building and operating a database
that could integrate all applications and keep a huge number of
simultaneous transactions up to date with an extensive terminal
network in real-time mode was unprecedented in its complexity.
There was a clear list of priorities, but there was no overview. The
database was undisputedly in first place. But right after that came
the application programs. Their task was to translate the differ-
ent categories of transactions carried out by the bank (such as
customer payments, customer authorizations, securities manage-
ment, and teller transactions) into digital form. Third on the list
of priorities were the much more specific operations, such as cus-
tomer accounts, accounting/controlling, security transactions,
stock exchange transactions, management information, and a
catch-all category of “new projects.”212 But in the end, everything
was interrelated, and significant delays in computerized transac-
tions were not permitted.

As a byproduct of their approach and their far-reaching
claims and promises, the Ubisco project partners ended up with a
massive time problem and a degree of complexity that were their
undoing. As in other ambitious computer projects, it proved im-
possible to scale up tasks that had been successfully completed on
a small scale.213 SBG tried to solve the problem by adding person-
nel, but as the level of detail increased, additional staff became

110

more uncomfortable with the problem. CDC, on the other hand,
seemed to be taking advantage of IBM’s experience in develop-
ing System/360, played for time, and even shifted personnel to
other, more promising projects.214 The bank accused their project
partner of breach of contract and was able to demonstrate clear
functional deficiencies in CDC’s software interface bridging the
hardware and the operating system. For the time being, SBG was
able to keep delays in its own application program development
a secret. Sooner or later, however, the obfuscation was bound to
stymie productive cooperation. By 1974 it was no longer possible
even to agree on a neutral procedure to assess the situation.215

Like many other large projects, Ubisco showed that there
were no shortcuts to digital space. The project outcome might
have been different had the effort been properly assessed from the
start. But the experience of other banks in moving their transac-
tions into digital space points in a different direction: comprehen-
sive rethinking of the banking business from the ground up was
required in the 1970s to move it into digital space. To do this, the
computer had to be seen as more than a tool for speeding up the
processing of (highly complex) information. The Ubisco project
centralized the problem of information processing in a radical
way and wished to turn the branches of SBG into organizational
terminals. In contrast, the Schweizerische Kreditanstalt – fore-
runner to Credit Suisse and SBG’s biggest competitor – was quick
to recognize that restructuring the organization of the bank was
necessary to conduct its business in digital space and vice versa.216
At the Swiss Bank Corporation (SBC), too, SBG’s particularly nim-
ble competitor bank in Basel, preparations for a real-time banking
system assumed from the outset that moving the bank into digital
space would require a new organizational structure. Even before
debating which IT equipment to work with, SBC’s general man-
agement was discussing new functional models for its various

111

work areas. Together with the heads of the major branches, the
general management defined a long-term development concept
covering computer selection, cost–effectiveness, staff training,
security, and project organization.217

These three examples of the complexities of setting up in a
digital space conclude with the relocation of the Federal Criminal
Police Office (Bundeskriminalamt, BKA) in Wiesbaden to digital
space. As with Bad Wörishofen, the BKA was concerned with trans-
lating registration forms into digital format; and as with Ubisco,
the stakes were at the limit of what was possible in terms of IT. The
basic issue was inevitably how to respond appropriately to rapid
growth. The goal of computerized policing, however, required
such a complex learning process for all involved that it was nearly
impossible to speak simply of success or failure. As it developed,
the project changed from an adequate response to contemporary
policing problems into an inexhaustible source of political con-
troversy. By the end of the 1970s, the relocation of policing into
the computer became a hallmark of West Germany’s self-image,
epitomized by the term dragnet investigation.218

At the end of October 1969, newly elected chancellor Willy
Brandt promised to launch an immediate program to intensify
and modernize the fight against crime. It was no longer possible
to ignore rising crime rates, insecurity evident in public opinion
surveys, and endless discussion of a crisis in policing. The impres-
sion of poor coordination, a chronic shortage of security person-
nel, and inadequate equipment had taken hold of public opinion
over the course of the 1960s. For this reason alone, Brandt’s emer-
gency program found broad acceptance. Moreover, Eduard Zim-
mermann’s TV program Aktenzeichen XY ungelöst (Case number XY
unsolved), which aired from 1967 onward, illustrated the appetite
of the nation’s viewing public for crime. Feature film sequences,
witness testimonies, crime scene evidence and expert opinions,

112

and feedback from the audience collected by telecommunication
made for successful television as well as successful government.
While broadcaster ZDF’s crime entertainment show stimulated
the audience’s brains with terrifying scenes on dark forest roads
and networked them into one big search engine, the technocrat-
ically oriented federal government designated the BKA as a house
of horror – namely, a place where overcrowded filing cabinets and
millions of index cards could hardly be searched successfully. The
BKA in Wiesbaden became the epitome of the organizational in-
efficiency and technological backwardness of the entire German
police force. Indeed, several weeks of rummaging through files
and index cards of the BKA were frequently required before police
could secure access. The effort to automate, centralize, and process
standardized information was intended to speed the work and
transform the dusty letterbox authority into a leading producer
of internal security. For this reason, the Federal Ministry of the
Interior wished to ensure that the BKA would “have its own data
processing system by the end of 1972.”219

The project goal was set and the necessary funds were re-
leased. Nevertheless, the relocation work was slow to get off the
ground. The BKA had concentrated on the complex criminal intel-
ligence service. This meant all the subtle ramifications of collab-
oration between the federal and state governments had to be ac-
commodated. To speed up the process, the Ministry of the Interior
now handed management of the project over to external experts,
namely, Eduard Zimmermann, Horst Herold, and the Kienbaum
company (Germany’s first consultancy). As the popular host of Ak-
tenzeichen XY ungelöst, Zimmerman in particular (whose character
was known as Ganoven-Ede) was expected to facilitate the process
through his authoritative and conservative image. However, he
did not have an especially good grasp of either computer technol-
ogy or the organizational intricacies of policing. The technocratic

113

faction of the reform commission was supported more compe-
tently and effectively by Nuremberg police chief Horst Herold
and by Kienbaum. Herold had been expounding for years and in
numerous publications on the advantages of computerizing the
police, how he wished to control the deployment of police forces
using “criminal geographic analyses,” and the preventive effect of
a police presence that could anticipate criminal activities.220 When
the consultants presented their report on the future BKA project
strategy in February 1972, the plans for a computer-based regime
could be approached anew. Especially since Horst Herold had in
the meantime been appointed the new president of the BKA and
received much advance praise from the press.221

Herold and his team concentrated on the most problematic
part of the investigation system and restructured the approach to
investigating persons and property. Forensic applications would
be translated into digital form only in a second step. The effort
put into transforming the BKA was unprecedented. The reporting
system was upgraded to interactive terminal connections, and
the agency’s personnel and equipment were expanded. Siemens
installed two 4004/150 mainframe computers (an RCA-inspired
answer to IBM’s System/360) in Wiesbaden in just under 10
months and distributed 35 terminals to security-critical points in
West Germany. From then on, data could be entered and retrieved
at these stations. In October 1972, a spectacular presentation of
the capabilities of the new “Inpol” search system was made to the
press at Frankfurt Airport. The old-style manhunt had clearly had
its day.

Only six months later, an amendment to the BKA law ex-
panded the powers of the criminal investigators in Wiesbaden.
The BKA became the central office for the data network between
the federal and state governments and was now in charge of in-
ternational cooperation and organized crime. Within a very

114

short time, the number of terminals for Inpol queries and entries
connected via the telex network of the Bundespost (federal post
office) was increased to about 600.222 In early 1975, 160,000 per-
sons were registered in the search system. The centralization of
data with decentralized access, which Herold had long champi-
oned, and even described as a “fundamental democratization” of
the police, had been successfully implemented. After members of
the Red Army Faction (RAF) were arrested in Stammheim, the BKA
jubilantly proclaimed the restoration of internal security in West
Germany. The digital search system was not used in the arrest of
Andreas Baader, Gudrun Ensslin, Jan-Carl Raspe, and Ulrike Mein-
hof. Nevertheless, the relocation of police investigations to the
computer was treated as a success, fulfilling the promise talked
up by the German news magazine Der Spiegel in 1972 when Herold
was appointed president of the BKA.223

The BKA continued to expand its digital search power. In addi-
tion to shifting forensic procedures into digital space, it began to
focus very specifically on the problem of the conspiratorial behav-
ior of terrorist organizations. As early as 1974, the BKA had begun
systematically registering prisoners’ visitors as part of its pris-
oner surveillance program. At the same time, a file was set up for
an “observational manhunt,” which was used “as a precautionary
measure” to record the movements of persons with prisoner con-
tacts. This qualitative shift to “preventive manhunts” was linked
to preparations for the major trial of the RAF. To combat terrorism,
tips from the population were amassed in a computerized data-
base on “persons, institutions, objects, and things” (PIOS). This
was in line with Herold’s conviction that factual evidence was
the only remedy against subjectively colored, unreliable witness
statements. With PIOS, even extremely complex contexts could
be searched in a “multi-dimensional” way. This, in turn, gener-
ated information relevant to a manhunt that would have been

115

impossible relying on the conventional files for vehicle or person
searches. The BKA was fighting the threat of a “data gap” between
the uniform Inpol database and the untapped content of crimi-
nal intelligence files. “Crime-relevant shards of information” re-
mained hidden in a “dark field.” That, Herold later explained, was
why “the PIOS register of found objects” was created, “which, with
five file columns, was akin to a rudimentary index.”224

A few years later, the modernization and intensification pro-
gram for crime fighting throughout West Germany was viewed
differently, mainly due to the growing importance of terrorist
activities. At the end of 1974, Günter von Drenkmann was shot
during a kidnapping attempt by the RAF; in February 1975, Peter
Lorenz, the top candidate for the Christian Democratic Union in
Berlin, was kidnapped; in April, the German embassy in Stock-
holm was occupied; in May, federal prosecutor general Siegfried
Buback was shot; and in July, banker Jürgen Ponto was shot. In the
fall of 1977, Hanns Martin Schleyer, the president of the employ-
ers’ association, was kidnapped and murdered by the RAF.

The BKA applied its computerized investigative power to all
of these cases, increasing its effort but decreasing the success rate.
Inpol queries provided the names of the occupiers in Stockholm,
but the authorities knew only too well where to find them. The
vehicles used in the Peter Lorenz kidnapping were quickly iden-
tified, but proved to be decoys that did not advance the investiga-
tion, and the “people’s prison” where Schleyer had been held for
weeks was not located until after his murder owing to a commu-
nications problem. “Sloppiness, missing documents, a tangle of
jurisdictions” had characterized the Schleyer manhunt, Der Spiegel
commented after an initial official analysis of BKA procedures.225
The project to intensify and modernize the fight against crime
had gone awry at its most prominent location, the BKA, which
lacked little in terms of computer technology.

116

Arguments against the use of computers in the BKA were
strangely restrained for the time being. Criticism was directed
primarily at the agency’s top brass and the incompetence of its
staff. Writing in Das Kursbuch and Der Spiegel, noted author and
editor Hans Enzensberger lambasted what he called “Dr. Herold’s
Empire of the Sun,”226 but even he did not criticize the failure of the
computers, only the incompetence of the team operating them.
Computers obviously enjoyed the privileges of a neutral proce-
dural authority. They were considered a somewhat civilized form
of police power, especially compared with the similarly unsuc-
cessful large-scale raids against the RAF.

And yet the use of computers was extremely problematic, both
legally and technically. PIOS in particular marked the conspicuous
step from computer-based information processing of criminal in-
vestigations to computer-based information production. Whereas
processing was based merely on data collected and maintained on
the basis of prior suspicion, the production of information for a
criminal investigation required data without known relevance
to be generated. For that, additional data acquired without solid
initial suspicion were required. Initially, the legal justification
for negative dragnet searches was very subtle. There was no way
of legitimizing the qualitative transition from processing infor-
mation to producing it.227 Any police force that stored data on un-
suspected persons as a means of filtering information, and which
also used other official data sources for this purpose, was on shaky
ground. This was the case even when requests for administrative
assistance were made correctly and the production of informa-
tion was primarily done by filtering and deleting data.228

The massive project of shifting federal police work into the
digital realm therefore fell into disrepute, though only after some
time. By 1979, 4.7 million personal names and several thousand
organizations had been recorded in the BKA’s computing center.

117

This information was increasingly interpreted as mortgage due
on the surveillance state.229 The technocratic optimism of the
Brandt government in 1969, which had the broad support of the
public, had evaporated. It had given way to the pessimistic as-
sessment that electronically produced security can also threaten
the democratic order. “Feeding the computer” not only required
a huge bureaucracy of civil servants but also generated an enor-
mous wave of distrust that engulfed the nation.230

The three projects described here for relocating to the com-
puter a municipal spa administration, a globally active major
bank, and a German police authority are naturally very different.
Their similarities, however, are no less interesting in terms of his-
tory of technology. Handling growth and the need to be able to
respond to varied demands or tasks were important motives for
moving previous administrative, business, and investigative pro-
cedures into digital space. All three projects aimed at setting up
an information system and were sooner or later confronted with
the fact that such systems must not only process information
but also produce it. The projects also had in common the radical
reduction of complexity to the smallest possible, flexible, and at
the same time robust information units that can be handled by
computers. In Bad Wörishofen, these were the “overnight stay”
or “guest,” for SBG they were the “transaction” or “business,” and
for the BKA they were the “clue” or “track.” Each project required
an enormous amount of setup work to adapt the computer to the
project goals and the organization to the command structure of
the computer. Successful adaptation could often only be achieved
through increased abstraction, rethinking the task, or unconven-
tional solutions. Structurally, the projects brought about changes
that were to become the new normal in the future: they changed
operations and their speed, and they created fast zones and new
waiting rooms. Everyone involved or affected had to learn to de-

118

sign new structures as well as to apply them, that is, to make them
operational. In the digital world, as in sports, after the game is al-
ways before the game.

119

6	 Connecting, differentiating, and storing

Computers are an ensemble of signs and electronic building
blocks that constantly interact during operation. They manage
the connections between their components and, in time-sharing
mode, they strengthen the culture of connectivity because their
users (while sitting at terminals) are constantly communicating
with the computing center and its interconnected devices.231

As computer centers expanded their processing capacity and
their program libraries, they became attractive to a growing com-
munity of users with a very different set of issues. It became in-
creasingly rare for the desks of such users to be located in close
proximity to the computer. As distance between the terminals
and the computer centers increased, the connection problem
had to be solved with the help of the telephone companies. At the
same time, computer developers and operators were contemplat-
ing how to expand available programs and capacities by access-
ing other computer installations. They even tried to make use of
minicomputers – typically located at the system periphery with
users – for smaller tasks or for the preparation of large jobs. This,
too, could sometimes only be accomplished with connections that
were not controlled by the data centers themselves. Moreover, the
connection problem became even more complex when intercon-
necting external computers and external networks.

Even at the level of the elementary components of comput-
ers, there was an issue not only of connection, but also discon-
nection.232 Switches, relays, and transistors establish connections
but can also interrupt them. Indeed, the time-sharing operating
systems of the 1960s controlled the simultaneous access of sev-
eral users to scarce computing time by interrupts. The interrupt

120

regulated internal traffic in digital space: processes could only be
routed past and separated from each other if one process was tem-
porarily interrupted and the computing capacity thus freed was
made available to a second process. Ten years later, it had become
necessary to develop procedures not only for sharing computing
time, but also for sharing scarce transmission capacities. This was
done to contain the relative increase in transmission costs associ-
ated with “long-distance data transmission.” Consequently, com-
puter-based telecommunications technologies began to regulate
long-distance traffic in digital space. They relied on packet switch-
ing to send clearly defined, uniformly delimited and addressed
data packets over lines that were needed by several users at the
same time.

By the late 1960s, developer attention had been shifting away
from processors and toward software. In the 1970s, it shifted to
the user and to connectivity. Anything that supported individual
or group autonomy was attractive. Since the 1980s, emblematic of
this trend, the “personal computer” restructured digital space in
a nuanced way. It offered smart local computing capacity, which
greatly enhanced users’ level of freedom.

The personal computer was a computer for personnel and
for the individual. People who worked “at the PC” were bringing
their own world into the computer. The PC highlighted questions
of relative user autonomy regarding questions of connectivity
and defining digital space. The same applied to problems of data
organization and storage in digital space, which intensified dra-
matically over the course of the 1970s and 1980s.

121

Connections

In December 1969, the Association for Computing Machinery in-
vited its members to a major meeting in New York on “Comput-
ers and Crisis” to explore the question of how computers would
change the future. One panel was devoted to anticipated chal-
lenges of data transmission. The panelists discussed the question
of how communication – which is the basis of society and holds it
together – could be relocated in the computer.233

John M. Richardson of the US Department of Commerce
kicked off the discussion with a lecture on “computation, commu-
nication, and content,” enthusiastically describing this trinity as
a “pregnant union” for the future. Computers, Richardson said,
played an important role in monitoring networks, connecting
telephone exchanges, and billing. Telecommunications, however,
offered additional computing resources, which was something
new. What had hitherto appeared as a rather loose coupling of
two technologies had already given rise to “new data processing
markets” and would, Richardson predicted, lead to a visibly close
connection in the foreseeable future.234 In this context, Richardson
referred to an “information technology” resulting from the tech-
nological “pregnancy” of computing and transmission.235 While
transmission was already providing for additional users of com-
puters in time-sharing mode, he predicted, the closer linkage of
computer and transmission technology would not only expand
imputed capacity but also generate a greater variety of content
and information.236

To General Lee M. Paschall of the US Air Force it was also a fore-
gone conclusion that the future evolution of digital space was to-
ward time-sharing and data exchange. As a communications spe-
cialist, Paschall found it easy to envision a network linking many
mini-computers and served by a database. But those approach-

122

ing the connectivity issue from the perspective of the computer
might prefer to think of a very large computer with many termi-
nals. Paschall’s take-home message was that while the connectiv-
ity problem might be conceptualized either in terms of comput-
ers or their interactions, it could not be eliminated; that much was
certain. Probably, over time, networks would emerge that would
link centralized and distributed structures. This would, however,
require merging very heterogeneous subsystems or replacing
them incrementally, both of which posed major challenges.237

While the Air Force operated 1,200 computers, only the air
surveillance machines were interconnected, Paschall said.238 Not
much progress had yet been made in this regard, although “com-
mand, control, management, surveillance, reconnaissance, and
communications” were actually closely intertwined. But there
was no direct “cross-fertilization” between the management of
computers and that of telecommunications networks, said Pas-
chall, extending the reproduction metaphor. For that, he noted
skeptically, the systems had been developed with little attention
to system design principles. In other words, there was a lack of
viable standards for coupling telecommunications and computer
technology.239

The ACM panel consensus was that computer-based compa-
nies and administrations could only grow if they expanded both
their computing and telecommunications infrastructures. Dodg-
ing the increasing pressure to connect was not an option. More-
over, organizations were, in any case, using their central comput-
ing facilities to expand the controlling power of the head office.
This could only work if ever larger portions of the organization
were integrated into the system. The links between the branches
and the computer center at headquarters had to be strengthened.
Computers were moving almost inevitably closer to communica-
tions technology. They had to translate local computing into com-

123

puting at a distance if the periphery of an organization was to be
linked to its computing centers.

Around 1969, however, the existing hardware stood in the
way of a quasi-natural transition from mutual usefulness be-
tween computer and communications technologies to their sym-
biotic interaction.240 Computers of different years of manufacture
or from different manufacturers were already compatible only
to a limited extent on-site. How, then, were they to be intercon-
nected in any combination and over long distances in order to
create something one might call an “information technology”
system?241 Since uniform standards were inadequate, the task was
to somehow upgrade them. This could only succeed in the near
future by approaching the problem in such a way that new rules
and standards did not necessarily conflict with old ones. For the
1969 ACM conference participants, that meant shifting their at-
tention away from machines and programs and toward users and
their connectivity.

“Everyone talks about the computer user, but virtually no
one has studied him in a systematic, scientific manner,” Harold
Sackman of the System Development Corporation in Santa Mon-
ica had noted a year earlier.242 It was impossible to transform us-
ers into predictable and understandable – indeed, unified and
well-integrated – components of a computerized information
system. Computer engineers produced an unexpectedly diverse
collection of species, even as they moved the “user” as far away as
possible from the machine, by designating an “end user.” At the
1969 ACM conference in New York, more than two dozen speakers
sat on panels addressing the end user. Another dozen papers were
cobbled together for sessions on “professions,” which (unsur-
prisingly) discussed professional users. The conference served to
produce a sizable catalog of the newly discovered creature called
“user” in all its varied present and future manifestations.243

124

In view of this diversity of species, the “(end)user” could only
be dealt with by transferring him into a new abstraction. How this
was to be done was laid out in an article published under the title
“The Computer as a Communication Device” by J. C. R. Licklider
and Robert W. Taylor, with the editorial help of Evan Herbert.244
Licklider and Taylor belonged to a small community of engineers
and scientists who were paid by the US Department of Defense to
conceive new uses for computing.245 It was part of their core busi-
ness to promote the future of computers again and again and in
very different contexts, including in experiments, at conferences,
and in anthologies, journals, and memorandums. And if – as with
the article by Licklider, Taylor, and Herbert – some of the ideas
got waylaid in a marginal publication, they could certainly be
used again in the next paper. Or they flowed into projects that the
community initiated, supervised, and carried out or supported as
cheerleaders. Licklider had shown the same inclinations as pro-
gram manager at the Advanced Research Projects Agency (ARPA),
which was founded after the Sputnik shock.246 For ARPA, the future
use of computers encompassed all kinds of things. It was hardly
ever about nuclear war, and never about the Cold War. What was
of interest was interaction, exchange, communication, coop-
eration, and symbiosis. In 1968, ARPA was focused on comput-
er-based collaborative projects and particularly on users.247 In each
project, the participants were expected to develop a shared idea
of whatever it was they were working on. Therefore, project work
amounted to the reconciliation of individual ideas. It was largely
a reconciliation of differences between different mental models.248
Computers could play a supporting role in this process. The mem-
bers of a spatially widely dispersed working group, for example,
who had different styles of thinking and heterogeneous expertise,
could – so the idea went – make their own mental models com-
prehensible to each other by supporting their formulations at all

125

times with data, programs, documents, and simulations. As soon
as the basis for everyone’s mental model was clear to all partici-
pants, essential commonalities within the working group could
be articulated. The simplified gestalt conceptualization regarded
computers as aids to collaboration and cooperation, regardless of
where the computer was located.249

This meant, first, that the heterogeneity of the actual ma-
chinery was hidden. Second, the phenomenological diversity of
users was reduced to the ideal “user,” who was thought of as a
communications-oriented creature closely connected to the com-
puter. Finally, connectivity, which had received scant attention
from computer engineers, remained unsolved. In well-equipped
computing centers, cables were usually invisibly tucked away.
Whereas in the early days computers were still programmed
by plugging cable connections into the control panel, now
everything that served to connect components was shoved either
to the back of the computer or under a false floor. At IBM, a rumor
circulated that the thick “boa” cables lurking in cable ducts (made
in the United States by the Anaconda Copper Company) could
not exceed 200 feet in length because otherwise they got danger-
ous.250 Cables leading out of the data centers were hardly noticed.
Robert M. Fano, who headed a large time-sharing project at MIT,
stated succinctly in his 1967 report titled “The Computer Utility
and the Community” that terminals could interact with comput-
ers “through existing communication facilities.” He neither knew
nor said anything more specific on the subject.251

Computer engineers had marginalized the transmission
problem because they considered wires and cables to be a trivial
matter and because in any event they did not wish to deal with
the particularly old-fashioned field of low-current technology
known as telephony.252 Electrical engineers who had found their
way into the development departments of telephone companies

126

were pitied because they had to deal with electromechanical re-
lays or, at best, with directional radio antennas.253 Unless, that is,
they were looking for ways to transfer conventional connectiv-
ity and transmission problems to the computer in which case
they might be considered computer engineers in the realm of
telephone engineers.254 It was here that computerized transmis-
sion and switching got exciting. In the late 1960s, pulse-code
modulation, time-division multiplexing, and packet switching
became high-value terms among these computer-savvy trans-
mission and switching specialists. At IBM, UNIVAC, CDC, and
Honeywell, however, no serious thought was given at the time
to problems of interconnectivity, and the telecommunications
companies had not yet recognized data transmission as a prom-
ising field of business.255

It was not until the 1970s that a decisive change in patterns
of perception occurred. Telecommunications companies were no
longer exclusively concerned with the possible shift of switching
telephone calls to computers. Rather, they began to think about
using their telephone lines to connect computers and to develop
inexpensive forms of data transmission. At the same time, com-
puter engineers concluded that not only computers and programs
but also connectivity could become a critical factor in the indus-
try’s growth.256

As a result, centralized computers were surrounded by a con-
fusing patchwork of user communities supported by telecommu-
nications.257 Companies built exclusive connections between their
computers at headquarters and users at branch offices, while in-
formation services sought a way to offer temporary connections
to their databases despite prohibitively high telephone charges.
The business models varied widely and could even be combined,
as the history of CompuServe shows. When the company was
founded in Columbus, Ohio, in 1969, the initial purpose was to

127

provide time-sharing services for a life insurance company. The
company also aimed to rent spare computing capacity to third
parties who wished to analyze their own data using either appli-
cations they had written themselves or off-the-shelf software.258
These supplemental customers relied on the public telephone
network with its high long-distance rates to connect computers.
To lower connection costs to reasonable levels, CompuServe de-

Figure 14: When computers were moved and rein-
stalled, as at the University of Michigan in 1980, the
perpetual battle against cables became apparent.

128

veloped its own switching services in various cities that ran over
minicomputers (PDPs). Users could now connect their computer
or terminal via their telephone line at local rates to a CompuServe
switching computer, which passed the connection request on to
another switching computer in Columbus, via a very busy dedi-
cated CompuServe line used by several connections. This com-
puter in turn put the request through to the computer that was
actually supposed to handle it.

The example of CompuServe shows that in the 1970s, busi-
ness models and types of use for connecting to and between com-
puters were combined in different ways. Both communicative
and computational tasks were delegated to computers at Compu-
Serve; computers were used to operate a company network and a
customer network, and to organize data processing transactions
and to provide software. The result was an extremely complex net-
work that served diverse demands and combined very different
connection technologies. A similar trend was evident at General
Electric Time Sharing Systems, whose supercenters expanded
globally as early as the mid-1970s, making the company the larg-
est provider of computing power in the world.259

In addition to service companies in the data processing busi-
ness, start-up companies sought to make their fortunes by offer-
ing specialized information, for example, literature searches for
scientists and engineers (Dialog) or case law collections for law-
yers (Lexis). In addition, companies such as Telenet and Tymnet
offered services exclusively for the purpose of transmitting infor-
mation between computers. Electronic Data Interchange (EDI),
in turn, offered a collection of standards and a series of networks
through which different companies within an industry could
exchange data worldwide, such as ORDERNET for the pharma-
ceutical industry or IVANS for insurance companies. In the early
1980s, ODETTE for automobile manufacturers, RINET for reinsur-

129

ance companies, SHIPNET for transport companies, and EDICON
for the construction industry were added.260 The SITA network of
European airlines, which operated nine data centers with 1,200
employees as early as 1970 and moved the formerly telegraphic
message service to the computer, was seen as a significant devel-
opment.261 Finally, the Society for Worldwide Interbank Financial
Telecommunication (SWIFT), founded in Belgium in 1973, built a
service for its members that transmitted both messages and mon-
etary transactions over a packet-switching network.262

The huge network boom could not obscure the fact that ex-
panding networks were constantly reaching their limits. It was
already extraordinarily difficult to develop a common control lan-
guage between two machines. When installations with different
rules of control met, it could easily happen that one machine did
not recognize the request of the other to connect simply because
it did not understand the language. But it could also happen that
the controlled machine knew how to handle the commands of the
others so well that it allowed itself to become completely depend-
ent, putting its administrative or jurisdictional control at risk.263

Computer engineers interpreted this problem as a matter of
diplomacy and called the rules that formalized delicate commu-
nicative tasks “protocols.” Whereas committees “glued their pro-
tocols to the front of the files of a procedure”264 (a reference to the
etymological sense of the word) to indicate how the files should
be read, diplomatic protocols guided the conduct of meetings
between rulers. Protocols not only facilitated exchanging data
between computers and programs, they also determined what
was allowed to happen while connected. They did this with all the
“solemnity and complexity that are associated with such commu-
nication.”265 The question of the difference between a computer
center and a center of power was left unresolved. In fact, the anal-
ogy really applied only to the fact that protocols must be agreed

130

upon, whether they are intended to facilitate communications
between the powers that be or between computers.266 Relatively
little effort was required to connect similar computers in a data
center. It became somewhat more difficult when they came from
different manufacturers. But things got really bad when not only
computers but entire networks of computers that were not under
common supervision had to be connected.267

As always, when confusion reigned, computer engineers re-
sponded with radical abstraction in search of a generalizable solu-
tion. Such had been the case with the development of operating
systems and of programming languages, as well as with every
translation of administrative processes into programmable proce-
dures. For the connectivity issue, that meant anyone who wanted
to master the confusing world of protocols had to create protocols
for specific types of machine connections. At the same time, these
protocols, which formed an entire world unto themselves, had to
be coordinated in such a way that they could interact. To do that,
protocols had to be organized according to functionality. Only in
this way could heterogeneous computer systems be made com-
patible, at least in terms of their connections.

In the mid-1970s, there were essentially two ways of achiev-
ing this abstraction, not just on paper but with the prospect of
operational effectiveness. Either a major computer manufacturer
had to succeed in developing a worldwide de facto standard and
enforcing it on the customer side, or the national telecommunica-
tions providers had to settle the matter among themselves. Both
options were pushed forward with great energy and considera-
ble success. IBM published a first version of its Systems Network
Architecture (SNA) as early as 1974. This extensive collection of
protocols for connecting computers consisted in turn of several
software packages. These included, for example, the Virtual Tele-
communications Access Method (VTAM). Beginning in 1975, DEC,

131

which had a special interest in computer connectivity because of
its minicomputers, also attempted to develop an industry stand-
ard with its Digital Network Architecture (DNA).268 The national
telecommunications providers were no less active. In 1976, the
Comité Consultatif International Téléphonique et Télégraphique
(CCITT) voted on a packet switching protocol called X.25 and de-
clared it an international standard. X.25 was immediately adopted
by the national telecommunications companies of Canada, Great
Britain, France, and Japan, as well as by the US computer network
operator Telenet.269

Large users and small computer manufacturers could there-
fore either follow one of the two industry standards – IBM and
DEC – or they could rely on the international organizational
power of the national telecommunications companies with X.25.
The choice was between two differently protected monopolies.
In 1977, a third way emerged in the great protocol war between
these two fronts. The initiative came from small (European) com-
puter manufacturers along with multinational corporations such
as Kodak and Unilever; British, Canadian, American, French, and
Japanese academics; and the British Department of Trade and In-
dustry. The idea was to work out an alternative, “open” collection
of protocols.270 Under the auspices of the International Standards
Organization (ISO), rash decisions on standards were avoided. In-
stead, the group first worked on a general framework for connec-
tivity in digital space. In other words, thought was first given to
the conditions that telecommunications standards had to meet.
The project was called Open Systems Interconnection (OSI), and
its very name made it clear that the intent was to develop an open
and systematic approach to interconnectivity. The goal was not
the gradual harmonization of existing standards but the develop-
ment of a theoretically stable framework for which specific collec-
tions of protocols could successively be developed.

132

OSI developed a layered architecture that distinguished seven
connectivity functions. Without worrying about issues of tech-
nical implementation, the project clarified the functionality for
the machine, data, network, transmission, connectivity, display,
and application. Each of these layers relieved the layer below and
the layer above of tasks and was in turn served by those layers.
As layers, machines, data, connections, and so forth were inter-
connected and yet at the same time clearly distinguishable from
each other. Through the collaboration of the project participants,
OSI established a model that structured thinking about the inter-
connections of and with computers by specifying clear, functional
boundaries.

When the OSI project was developed in the mid-1980s, ex-
pectations were enormous. In Europe, it was seen as a way to
strengthen the European single market for computers. In the
United States, in 1983, the government organized OSI courses for
computer manufacturers and recommended the OSI model to
communications technology specialists in the military. For French
technology policy makers OSI represented a means of preventing
IBM from dominating the global interconnectivity market.271

Nevertheless, progress in developing and implementing OSI
protocols was slow. The documentation that appeared over the
years was extraordinarily detailed and, at times, confusing.272 The
model had grown into a veritable paper tiger, an offer that could
be refused but not understood.273 At the same time, however, nei-
ther IBM’s nor DEC’s network architectures, equipped with work-
able “protocol suites,” nor the X.25 protocols of the national tele-
com providers were in a position to assume sole dominance over
connectivity in digital space.

The simplest solution was ultimately provided by a rather
modest set of protocols – in contrast to the number of networks
in operation at the time – which concentrated on interlinking in-

133

stead of standardizing all of them. Since the 1970s, work in this
area had been carried out within the framework of ARPA and in
international, academically oriented projects.274 The solution was
presented in 1983 by Vinton G. Cerf and Edward Cain as the US De-
partment of Defense Internet Architecture Model.275 Cerf and Cain
went to some pains to encourage military interest in the model.
Therefore, to sell “their” network architecture to the military, they
readily underplayed the international and academic character of
the working group in which American, British, and French scien-
tists had been developing techniques since 1972 for interconnect-
ing networks.276

The requirements placed on the Internet model could not
have been more extensive nor more diverse. It was supposed to
link heterogeneous networks of the most diverse provenance, en-
able interoperability, demonstrate high reliability under adverse
or even hostile conditions, transmit files and make them readable
at a distance, permit the targeted distribution of messages, and ac-
cept all possible types of terminals. As if that were not enough, us-
ers also wanted to be able to send text, fax, and graphic and audio
messages, preferably over any channel that had ever been set up
anywhere in the world.277 It goes without saying that this promise
of connectivity appealed to the military. But scientists and engi-
neers with a penchant for analytical and abstract thinking also felt
irresistibly attracted by the wealth of opportunities.

It was, therefore, the combination of operational capability
and a radically simple approach that led network engineers to fo-
cus on the problem of interconnecting networks. In 1977, three
completely different networks were experimentally linked, and
in 1978, the protocol used for this purpose was separated into two
parts. The Transmission Control Protocol (TCP) was responsible
only for exchanging data between two computers. The Internet-
work Protocol (IP), located on a newly introduced abstraction

134

layer, regulated traffic on the intermediate network independent
of the transmission medium.278

Toward the end of the 1980s, the Internet protocols began to
spread, to the great surprise of the previous leaders in the field.
Neither IBM, DEC, X.25, nor OSI could resist the practical, robust
connectivity that TCP/IP had to offer. A collection of protocols that
was supposed to work globally had to be able to deal with hetero-
geneity and worldwide organization. ARPA had always assumed
a diversity of users and systems. What they offered was not a per-
fectly constructed overall system, but network connectivity that
was as simple as possible and therefore particularly robust. Users
only had to worry about the standards “on their side of the hall,”
so to speak. The transition from the intermediate network to a
local installation was the task of those in charge on-site. In fact,
some network operators in the US armed forces also dreamed of
a single, all-connecting network. What they probably meant was
an all-military connecting network, one that would have enabled
them to bring the heterogeneity of their networks under their con-
trol – just as other network operators, operating in highly diversi-
fied markets, were primarily interested in reducing heterogeneity
in their networks.

The TCP/IP developers did not need to separately consider the
military and civilian dreams of homogeneity. That was the devel-
opers’ great advantage. There was a (growing) demand for inter-
connectivity, and it was manifold in nature. Whoever could handle
the problem of linking connections had the upper hand, because
connected networks increased the possibility of moving the trans-
actions, messages, and debates of the world into the computer. The
Internet development community demonstrated this potential
particularly well. In 1967, they had met in front of screens in Doug-
las Englebart’s lab at the Stanford Research Institute and imagined
the new users whose communication processes would be sup-

135

ported by interconnected computers. Two decades later, it was the
generic connection between computers that enabled communica-
tion to be shifted into the computer – regardless of which computer
or network was used to access the digital world.279

Differentiation

In the spring of 1975, an electronics company called MITS that
was based in Albuquerque, New Mexico, placed a full-page ad in
several electronics magazines. The ad presented the MITS Altair
8800 computer kit, and there was a lot of explaining to do. The
ad’s (necessarily) lengthy text was illustrated by a photograph
of carefully arranged objects. Circuit boards, cables and a trans-
former, capacitors, and other electronic components lay scattered
decoratively about a workstation. They were apparently waiting
to be installed in the empty aluminum case that could be seen in
the background of the picture. Soldering irons, screwdrivers, and
assembly instructions were at the ready. All that was missing was
a skilled electronics hobbyist to put things in order.280

“Building your own computer won’t be a piece of cake,” an-
nounced the large type next to the photo. In fact, the ad continued
in smaller type, you’d need more than an hour or two to assem-
ble the device. Indeed, the Altair 8800 was not a toy. It was a fast,
powerful, flexible device – a full-fledged computer. Enthusiasts
who had already assembled a simple electronic calculator from
the same manufacturer would have a particularly satisfying expe-
rience with the Altair 8800. For 439 dollars, you got everything
you needed, plus the prospect of being busy for a long time even
after the soldering was done. The three manuals that came with
the kit promised credibly that it would be a real challenge, even
for demanding hobbyists.281

136

Publicity for the kit was so completely focused on the experi-
ence of assembly and expansion that typical questions of what to
do with the computer did not arise. The modest 256 byte memory
wasn’t suitable for programming an autopilot for an airplane, as
Popular Electronics magazine had boldly promised a few weeks ear-
lier. Nevertheless, connecting the computer in its aluminum case
to an electric typewriter and the television in the living room, and
bringing in the sticky cassette recorder from the kitchen to use as
a storage device for programs, did fire up people’s imaginations.282

No matter what code you entered into the computer using
the toggle switches, when you got to programming using the cir-
cuit-filled, aluminum-cased device, you felt as though you were
on board the starship Enterprise traveling to glimmering Altair.
And if you paid attention, there were some nice surprises along
the way. Steve Dompier from Berkeley had spent a good 30 hours
soldering and another 6 hours searching for a connection error on
the circuit board. Then he went to test the basic functions of his
new computer on the front panel because there were no usable in-
put and output devices. One of the things he did was to load an el-
ementary sorting program in the microprocessor. While doing so,
he noticed that his small transistor radio picked up the switching
noise of the Altair. He recognized that the computer was produc-
ing interference that drowned out the weather report broadcast
on the radio. The same thing happened with all the programs he
ran on the computer, which became audible on the radio. After an-
other eight hours, he found he could link particular programming
steps to produce specific tones on the radio. Subsequently, at the
next meeting of the Homebrew Computer Club, Dompier had
something very special to offer the members: Paul McCartney’s
Fool on the Hill arranged for Altair and transistor radio.283

The performance was a success. The audience clamored for an
encore, a first indication of the program’s significance for com-

137

puter history. Quite unexpectedly, Dompier later reported, he got
the computer to break into an “apparently genetically inherited”
version of Daisy Bell, a popular song from the 1890s. The song had
been programmed in 1961 by John Kelly, Carol Lockbaum, and

Figure 15: The Altair 8800 – a challenge for adventurous hobbyists.

138

Max Mathews for an IBM 7094 machine at Bell Labs. It was also
hummed by the “dying” HAL 9000 computer in Stanley Kubrick’s
1968 film 2001: A Space Odyssey. The fictional HAL 9000 was not
made by International Business Machines, though its name can
be derived by shifting each character of IBM to the preceding let-
ter. HAL’s name referred to its function, serving as a Heuristically
programmed ALgorithmic computer. When HAL showed unex-
pected emotions during a trip to Jupiter, it had to be shut down
module by module.284

Dompier had not only constructed and programmed an Altair
8800 but also created an iconic story. People’s Computer Company
magazine published it with an illustration of the Altair sitting
weirdly on a hill – just like The Fool on the Hill. The machine held a
transistor radio in its hands that channeled the programmed ver-
sion of McCartney’s song, transfixing all the local wildlife. As the
program for the first song ran its course, the Altair then produced
a love song to a distant Daisy that harkened to the era of the IBM
mainframe. In a sense, the echo seemed to be programmed in its
core. Despite the demise of Kubrick’s HAL 9000, hope for Daisy
Bell resonated in Dompier’s Altair narrative, even gaining new
power, and fascinating readers. At another level, with its “spon-
taneity” the story acquired new meaning seeded by Bell Labs and
expressed in the discourse of flower power: “There is a flower
within my heart, … planted by Daisy Bell.” In the popular song, the
lover wanted not just to share his bicycle with the beautiful Daisy,
but also to throw in his lot and share his life with her. Of course,
he was a fool, as in McCartney’s tune. And crazy, too, as the Bell
Labs’ IBM 7094 and Stanley Kubrick’s HAL 9000 computers reiter-
ated in their renditions of the popular song.285

The flowery story aside, the situation was very difficult to
reckon with, even for the most seasoned of amateurs. Jef Raskin,
the busy editor of a hobbyist journal, sought to steer readers to-

139

ward “a bit of wheat amongst the chaff.” His experience with kits,
spare parts, additional components, and instructions showed
that not everything was as exemplary and viable as the Bytesaver
memory card distributed by Cromemco for the Altair. In Dr. Dobb’s
Journal of Computer Calisthenics and Orthodontia, Raskin tried to
spare potential kit purchasers the worst, and offered “brother-
hood, sympathy & emotional release” to those who had already
bought kits.286

The computer for the everyman had not yet arrived. Raskin’s
belief that computers should work for ordinary people sounded
heretical unless, that is, you reinterpreted the devotion of ama-
teur electronics engineers to the microprocessor as a tinkerer’s
aimless, indulgent pleasure and accepted it as a cultural practice
whose very personal, rather ascetic path was the goal. If the willful
combination of cultural techniques (soldering, reading, and pro-
gramming) did not necessarily lead to anything more useful than
Kill the Bit (a game written for the Altair 8800) with a glorious hour
of purposeless play, then the service relationship between human
and machine was actually balanced.287 The interest of hobbyists
in programs that could calculate prime numbers was not driven
by a pressing need for prime numbers. Hobbyists continued to
develop the programs purely because the easily verifiable results
confirmed their ability to read manuals, the functional efficiency
of the printed circuit boards they had assembled themselves, and
the suitability of their own programs even under precarious tech-
nical conditions. That was all it took. Sorting programs, interfer-
ence, and outlandish narratives helped to make the personally
constructed computer usable by all and for any conceivable pur-
pose. Games and music could not be excluded. Their significance
actually crystallized through use and should be construed neither
as “misuse of military equipment” nor as misappropriation of
research and administrative computers.288 On the other hand, in

140

Silicon Valley, which extended all the way to Albuquerque, people
were hard at work moving the hobby, and with it the garage, into
the computer.

With the Altair, everything was still written in the stars. The
hobby computer represented an adventurous combination of
knowledge and imagination, intrepidness, and advance billing
on the part of many players.289 Nevertheless, it sold like hotcakes.
The kit’s price rose from ad to ad, delivery times spiraled out of
control, and production of promised peripherals was postponed
again and again.290 These developments encouraged many imita-
tors, suppliers, and programmers to jump into the gap between
supply and demand themselves. Soon there were two dozen kit
products enabling persistent hobbyists to equip a microprocessor
with a programmable environment.291

ACM members didn’t have to read Altair advertisements to
know about the completely unexpected movement at the lowest,
barely serious edge of hardware and software supply. At the 1976
National Computer Conference in New York, the professionals
even addressed (albeit fleetingly) the problem of how to build a
personal computer around microprocessors or with discarded
equipment parts. However, the larger question of what an ama-
teur might do when he got tired of playing on his “machine” was
not answered in this “overview for computer engineers.”292

That task was taken on by the editor of Dr. Dobb’s Journal at the
1977 National Computer Conference in Dallas. Jim Warren was
a traveling salesman between worlds. He had just founded the
Silicon Gulch Gazette and organized the first West Coast Computer
Fair. As a math teacher, he knew his way around the world of col-
lege students. As a doctoral student in computer science at Stan-
ford, he’d had a connection to computer science. That he believed
in improving the world technologically made him an above-board
source for both established computer engineers and countercul-

141

ture-inspired amateurs. Warren knew how to translate the story
of Dompier’s creative use of hardware, rudimentary commands,
and a quirky Beatles song. Moreover, he knew how to explain
the history as well as the current state and trajectory of the de-
velopment that transformed the universal digital computer into
a consumer product. Warren gained credibility with both camps
by blithely enumerating the differences between “personal com-
puting” and “professional computing,” and by further delineating
the two fields.

Personal computers, Warren said, were characterized by com-
plex hardware and a lack of software for serious applications. Low
cost was crucial, while speed, capacity, and reliability remained of
secondary importance because users’ time and effort cost noth-
ing. Their main concern was entertainment in the broadest sense
of the word. Consequently, the computers did not have to be at-
tractively designed, and you could see the widespread use of sec-
ond-hand equipment among amateurs. On the other hand, cus-
tomer support did matter.293

Thus, when it came to personal computing, there were many
different factors and components, and the hardware was as “in-
dependent” as the users. That meant that each machine placed its
own demands on the software. Cost–effective software develop-
ment was simply impossible, in part because of the widespread
sharing culture of amateurs.294 Attendees at the ACM may well have
wondered what could actually be achieved with such computers.
Warren remained grounded in reality. He had recounted the
journalistic and organizational development of computers with
enthusiasm and expertly described the wealth of variation in the
hardware landscape. But his answer to the question of usefulness
was unabashedly sobering. Conventional business and industrial
applications were simply out of the question, said Warren. The
most important application was games, and in the future perhaps

142

group games as well. Games also had an educational value. In ad-
dition, music and radio applications might gain in popularity.
There might be some interest in word processing. But without
good printers, you could not get very far. Perhaps the future would
produce a digital library, in which case, at least marginal notes
made while reading could be stored locally.295 In other words, the
personal computer was a product of the hobbyist sector. As such,
everything could be moved to the device so long as it was a game.
Sounds could obviously be handled, and perhaps it would even
eventually be possible to write things down. But these capabilities
had yet to be proven.

A year later, the ACM’s newly formed Special Interest Group
on Personal Computing (SIGPC) published a position paper on
how to move from hobby computing to personal computing.
Alan Kay, Adele Goldberg, and Larry Tesler of the Xerox Research
Center in Palo Alto would have known that position papers are
a static thing, especially when they concern the future. “Neither
hardware nor software is right; most everything is yet to be done,”
read the paper’s opening sentence. Nevertheless, the trio didn’t
hesitate to take the plunge into a very indeterminate future right
from the second sentence: “Some day, personal computing will be
exciting and useful to a large range of people of all ages.”296

In that regard, it was difficult to harness the personal com-
puter. No sooner had it been boxed into an aluminum container
as a rudimentary programmable microprocessor, resulting in
the Altair, than it broke free of its hardware and made its pres-
ence felt in the transistor radio. When Jim Warren assigned it to a
conceptual corner, where it might have enjoyed an existence dis-
tinct from the business computer, people were impatient to use it
for word processing. And even as the team at the Xerox Palo Alto
Research Center denied the current usefulness of the personal
computer, in the same breath there was talk of the personal com-

143

puter imminently becoming exciting and useful on a large scale.
Notwithstanding expectations in the second half of the 1970s, the
personal computer remained a small but surprisingly unwieldy
thing, whose characteristics were hard to pin down. “The personal
computer defies exact definition,” wrote Portia Isaacson, Adam
Osborne, Robert Gammill, Larry Tesler, Richard Heiser, and Jim
Warren in an essay.297 In the spring of 1978, these experts had dealt
with the expected personal computing problems of the 1980s and,
after a conference in Portland, had written their “Oregon Report”
on personal computing, which was published a short time later in
Computer, a trade journal published by the Institute of Electrical
and Electronics Engineers (IEEE).298

The fact that the authors were at pains to name the key fea-
tures of the personal computer right at the beginning of their re-
port speaks volumes. Artists could use it to create new art forms.
Financial market analysts could study stock market prices. A sec-
retary could enter and edit manuscripts. In short, personal com-
puter applications were as diverse as the individuals who used
them.299 To deal with this diversity, the all-purpose computer was
once again the order of the day. At the beginning of the 1950s,
with UNIVAC, the Rand Corporation had universalized procedures
such as sorting, classifying, computing, and decision-making; in
the mid-1960s IBM had attempted to unify different classes of pro-
cessor performance with its System/360; and the figure of the “end
user” had served to generalize the different application areas of the
1970s. With the personal computer of the 1980s, users were the
source of complexity; any claim to universality would therefore
have to start with their machines. In its most limited, individual
form, the computer was to be turned into a personal computer
that anyone could use to do practically everything. To achieve
this, the machine had to be versatile and provide several highly
divergent and even contradictory services. It could process texts,

144

track private expenses, or compute melodies and play them elec-
tronically. Regardless of whether the computer was imagined as a
home computer, a consumer computer, or a hobby computer, or
as a personal computer for business, education, or science, it was
intended to be a general-purpose, intelligent machine that could
fulfill specific purposes for particular categories of users.

What is striking is how quickly this claim to universality
broke down into individual fields of development at the end of
the 1970s. The “Oregon Report” is essentially a time-lapse account
of computer history, a technological journey focusing on the mi-
croprocessor. On the hardware side, the focus was on processor
performance, memory, mass storage, monitors, printers, and in-
put devices, and on the software side on programming languages,
operating systems, application software, and, as a critical long-
term problem, interconnectivity.300 The “Oregon Report” therefore
reads like a comprehensive development plan for a personal com-
puter from a major manufacturer. All that was missing was the
large consumer market to be able to mass produce computers in
the low-end microprocessor range. If hobby and home were too
small for that, it was possibly worthwhile to take another, closer
look at the office.301

The challenge in moving office work to the computer was that
almost every activity was different. For the most part, office work
is weakly structured.302 This lack of structure had become even
more marked since the 1950s, when the exceptions to the rule
had been moved to the computer, namely, particularly well-struc-
tured, mass-produced tasks. Anything that was not sufficiently
monotonous to be moved to the computer was simply left at the
desk and consisted primarily of odds and ends with high text
content. However, three decades after UNIVAC, it appeared that
a personal computer for workers might happen after all and that
the large amount of residual desk work could also be shifted to

145

the computer. Doing that would require rethinking services not
from the vantage of an organizational and technical center, but
from the periphery. In other words, instead of adding further
time-sharing system terminals to specialized workstations and
personalizing computers that way,303 screens and keyboards with
minimal microprocessor intelligence could be provided right
where they would be used for small jobs. They could then replace
(electric) typewriters, desk calculators, index cards, notepads, and
more. Such a multifaceted machine could lead to mass business,
providing manufacturers with the economies of scale that were
considered a prerequisite for shifting highly individual forms of
computing, even in the home and garage.304

Possibly, with luck, maybe, and soon. Meanwhile, sales pro-
jections for the Apple, Texas Instruments, and Commodore mi-
crocomputers sold in thousands of Radio Shack stores had to be

Figure 16: Nativity scene: the IBM personal computer and skeptical
but impressed users (1981).

146

revised downward, and at the meeting of the ACM’s provisional
special task force, the chairman confessed that still nobody could
actually say what a personal computer was.305 Was it its external
appearance, portability, location, lack of connectivity, software
offerings, or form of use that characterized it? The New York Times
noted in 1979 that PC manufacturers introduced their devices
that year not at the Consumer Electronics Show in Chicago, but
at the National Computer Conference in New York. Lewis F. Ko-
rnfeld, president of Radio Shack, had even asked reporters at the
launch of the TRS 80 Model II line of computers not to call them
“home computers.” The machine, he said, was intended primar-
ily for the “small-business man.” In the opinion of the Times, no
one really wanted to pay between $500 and $3,000 just to watch
their monthly budget erode, educate their children, and turn
on the sprinklers in the garden. But even if the home computer
market never actually emerged, demand from small businesses
was real. Accountants, lawyers, and dry-cleaning firms, for ex-
ample, would be able to manage their mailing lists, their sub-
missions and pleadings, or simply their billings and estimates
on the computer.306

Nonetheless, the IBM personal computer unveiled in the
summer of 1981 was met with great skepticism. According to a
shaken New York Times, “big IBM’s little computer” at least showed
that the market leader apparently had learned from its experience
with the DEC minicomputer. With the personal computer, IBM
seemed to want to make inroads into the consumer electronics
market dominated by Apple and Radio Shack. The “newspaper of
record” had its suspicions confirmed by computer dealer Michael
McConnell, who was quoted as saying that personal computers
were no flash in the pan.307

IBM’s offering was intentionally ambivalent, as was obvious
in almost every line of the product description. On the hardware

147

side, the IBM personal computer was expandable, unlike other
microprocessor computers. In addition, it offered interesting and
well-tuned peripherals, and buyers were supported by a profes-
sional service network. On the software side, IBM always pointed
out professional and private, that is, sophisticated and modest,
application possibilities at the same time. There was a built-in
speaker for music and an operating system, a matrix printer,
and a Pascal compiler for programmers. Word processing was
made possible with EasyWriter. Users who preferred doing fi-
nancial forecasts and simulations could use VisiCalc. In addition,
there were fantasy games from Microsoft and access to Dow Jones
News.308 Following IBM’s only moderately successful attempt in the
late 1970s to produce small or very locally distributed computers
for the office, the focus was now on blurring the boundaries be-
tween hobby, home, and office, with a decided emphasis on the
latter in terms of price.309

Critics of the personal computer pointed to the lack of a tech-
nical breakthrough; defenders cited a considerable increase in
computing power if a coprocessor were added to the PC.310 Both
overlooked the inherent focus on adaptability, emphasizing the
variety of options available to users. Indeed, the IBM personal
computer was brilliantly tailored to the Reagan era: a cultural
model of options and choice took shape inside the PC.311

Everything was packaged into a single device, neatly deline-
ated yet configurable as an all-purpose machine. It offered compu-
tational intelligence in the form of local computing capacity, and
enabled individual programming, writing, simulating, playing,
learning, and calculating in every conceivable way. The world that
had moved into the personal computer was the world of one’s own
work, play, spreadsheets, individual simulations, if necessary the
world of one’s own programs, but certainly the world of one’s own
texts, notes, reminders, and memories.

148

In 1981 there was hardly any viable alternative to this universal
orientation of the IBM personal computer with its diverse configu-
ration options. It was not until a good two years after the delivery of
the IBM PC that such an alternative began to emerge. It was particu-
larly radical in its attempt to universalize the personal computer for
anyone who did not have access to a “real” computer. Such a device –
a computer “for the rest of us” – was unveiled by Apple in early 1984
with a vast promotional campaign.312 Since computers were smart,
Apple’s marketers claimed, it would make sense to teach them
about people instead of trying to teach people about computers.313
According to one of its ads, Apple set about “teaching tiny silicon
chips all about people. How they make mistakes and change their
minds. How they label their file folders and save old phone num-
bers.” The computer of the future was supposed to know everything
about its users – “[h]ow they labor for their livelihoods. And doodle
in their spare time.” That’s what it took to produce a computer that
was so genuinely personal it could practically shake your hand, and
so easy to use that “most people already know how.”314 When a com-
puter was shown how people felt, thought, and acted, the computer
and the user changed, and so did their relationship. The ad ended
by introducing the computer by its name: Macintosh. “Hello,” the
computer said.

The microprocessor computer embodied empathy for both
learned and for somewhat limited users, providing essentially a
black box, encasing components that were safely sealed away and
out of reach of soldering irons and screwdrivers. The graphical
user interface not only kept the user away from the components
but also from the operating system and its command lines. The
very personal Mac was diverse in its applications, completely ori-
ented toward users and their idiosyncracies, but insofar as possi-
ble separated off from everything else.

149

Storage

In the early 1950s, a Rand Corporation commercial invited people
to use the largely idle computing capacity of the first commercial
computer in history to solve problems of sorting, classifying, com-
puting, and decision-making. UNIVAC was portrayed as a well-or-
ganized, powerful machine that could be efficiently fed with data,
worked unimaginably fast, and generated output in a very short
time. Under ordinary circumstances, whole armies of office work-
ers would have had to struggle for days with the tasks that this
electronic miracle machine completed in an instant.315 Even for
skeptics, there was nothing extraordinary about the media previ-
ously used and still now used with the machine. Paper, punched
cards, and magnetic tapes were all familiar and had been used

Figure 17: The Macintosh in 1984 – relatively compact, well-bred, and
decidedly user-friendly.

150

for many years, decades, or centuries for recording, transmitting,
and storing administrative information.316 The computer could
take what it was given (datum) from such media; run it through
task-specific programs; and print, punch, or record it again as a
processed result (factum) on equally familiar media.

After processing, the computer was empty and clean. Input
and output were stacked up as if they had never had anything to
do with each other, as piles of cards or paper, and nothing had
stuck in the computer’s “memory.” No traces or residues, zero
contamination. This depended neither on how clean the entered
data were nor on the validity of the results obtained. It depended
instead on the design of the memory. In UNIVAC, the memory
consisted of four-meter-long tubes filled with mercury. If the
computer had to remember something, an oscillating crystal sent
a sound wave through one of the tubes. The time it took for the
wave to pass through the mercury and hit a second quartz crys-
tal at the other end, where its pressure caused a voltage rise and
generated another electrical signal – that time constituted the
elementary functional performance of the computer’s memory,
which was also called delay line memory. In UNIVAC, 100 such de-
lay line memories were installed, which together formed a thick
bundle of mercury tubes. Ten alphanumeric “words” encoded as
oscillation patterns ran in each individual tube. If such a word had
to be remembered longer than it took the sound wave, slowed by
the mercury, to travel, it had to be sent electrically back to the be-
ginning and through the tube again when it arrived. The process
was repeated until the word was used in the program and the os-
cillation could be stopped.317

If the computer was loaded with particularly complex opera-
tions, the costly delay line memory, which had low capacity, was
inadequate. The only alternative was to write down intermedi-
ate results. What was recorded on this “notepad” in the form of a

151

magnetic tape could be retrieved and put back into the computer
as needed. The designers of UNIVAC called this auxiliary memory
“storage.” It represented a small but revealing semantic shift from
the terminology commonly used for calculating machines since
Babbage. Conventionally, any of the numbers in the machine could
be said to be in the “store,” whether they were inputs, intermediate
results, or final results.318 With UNIVAC, there was obviously a need
to functionally differentiate the conceptual landscape: while the
input and output were stored outside the machine, the operands
were located in the registers. The running program and the data
that could not yet be moved to a register were in the memory. And
intermediate results that could not be placed elsewhere were re-
corded in storage. Strangely enough, UNIVAC’s designers spoke of
“temporary storage,” as if the expression required qualification.319
The curious aspect of this is that memories are only meant for
storing information that will be used later. Memories bridge time
and as such are necessarily “temporary.” “Temporary memory” is
redundant. Might plain talk about “memory” have been embar-
rassing because it pointed to the limited capacity of the computer
and betrayed the inelegant solution to an operational bottleneck?
In the prestigious high-tech field of computers, this approach had
a dubious charm – UNIVAC apparently was an electronic marvel
that could no longer hold everything in the intermediate steps of
its computing work.

In any event, any reluctance to use the term is not of histori-
cal interest. Rather, it is the fact that over the next years and dec-
ades the “notepad” developed into a multifunctional long-term
memory of previously unimaginable size.320 For the question of
how the world got into the computer, the rapidly expanding aux-
iliary space of temporary storage is hugely significant. In addition
to process junk, the space could accommodate critical data files
and frequently used programs. Here, as in the warehouses of large

152

maritime ports, further transactions could be prepared, and data
could be regrouped according to customer-specific wishes and
combined into other order units. The world was moored in stor-
age, though it was thought to be on a long line.

The history of storage is conventionally told with reference
to the effect of falling storage costs or rising storage density. But it
may be better interpreted in terms of storage management, that
is, as the evolution of a system flaw to a general feature of the sys-
tem. This narrative focuses on the organizational interaction of
the various memory and storage units and the linking of data.321
After the assembly line concept was dropped toward the end of
the 1950s in favor of the more flexible random-access model,
management of the digital data repository was transformed in
four major waves of development: (1) In the 1960s, the sophisti-
cated logistics of procedural databases made it possible to keep
data available for quick access and to link them in a stable and re-
source-efficient way. (2) The mid-1970s saw the rise of relational
database technology, which had to do with tables and the ability
to freely combine data. (3) About the same time, a major change
occurred when interactions between different types of storage
were managed systematically. (4) Finally, in the late 1980s, the hy-
pertext structure of the emerging World Wide Web relied on the
possibility of linking even very heterogeneous data sets on differ-
ent machines. On the basis of these four, historically overlapping
developments, the following section explores the question of how
dealing with memory and data issues contributed to anchoring
the world in the computer.

The first of the fundamental changes in storage and data man-
agement in digital space might well be called procedural database
management with chains and programmers. In the early 1960s,
there was talk of developing a general programming system for
random access memories. The focus was data logistics and asso-

153

ciated procedures. At the Joint Computer Conference in Minne-
apolis in the fall of 1964, Charles Bachman and Stan Williams of
General Electric presented the Integrated Data Store (IDS), a gen-
eral programming system for massive and flexible access to data
storage. IDS was a sophisticated database management system
that could be used for very large and very diverse applications.

The system was based on so-called records, which were com-
posed of “data fields” and “chain fields.” Chains were task- and
query-specific links between the individual records. They ensured
the integration and association of the records, and procedures for
storing and accessing the data were adapted for that.322

Figure 18: Records had any number of data
fields and could be linked to any number of
chains.

154

To plan and control complex business processes, the flow of
orders and materials had to be managed; information had to be
simultaneously stored, retrieved, communicated, and processed.
And for that, reliable techniques for organizing data were needed.
Furthermore, a database had to be suitable for use by different ap-
plications, so that data did not have to be formatted separately or
updated for each procedure.323

With the IDS, General Electric had developed an actual data
logistics system for data traffic. An input/output controller moni-
tored the transport of the data between the hard disk (disk mem-
ory) and core memory. For this purpose, it used data blocks on
which the records currently used in the core memory were com-
bined. The blocks had a fixed size but could still contain records of
different lengths; data blocks functioned like pallets in the trans-
port of goods by rail.324 The blocks could be used to move records
comprising (interlinked) data fields between the large but slow
disk memory and the small but fast core memory. The core mem-
ory, however, contained a constantly updated inventory of all data
blocks. To speed up the search and transfer procedures, blocks
that were not currently needed were released from core memory,
while those that were used repeatedly were allowed to remain.
Data blocks that were changed after processing were written back
to the disk memory.

The IDS featured a large variety of linking possibilities and was
nevertheless space saving in its memory management.325 Linking
the records via chains and transferring them on data blocks en-
sured the mobility of the data while economically handling the
different forms of storage in the computer. Only programmers
could create new chains, redeploy data blocks, and submit new
procedures. Procedural databases were subject to the authority of
programmers, and their data were labeled in such a way that they
allowed specific queries but others only with additional program-

155

ming effort. This strict regime could only be broken by developing
a completely different, much more elaborate, and even more rad-
ical database concept.

Relational databases of the 1970s aimed to simplify ways of
linking data. Their main focus was on the table and ways of con-
figuring data. In 1970, Edgar F. Codd, of the IBM Research Labora-
tory in San José, presented his thoughts on a radically new data-
base architecture.326 In the future, he said, operation of large data
banks would produce new groups of users who had to be pro-
tected from having to know how the data that interested them
were organized (internally represented) in the machine. Users
should be released from the care of the programmers. But the

Figure 19: The data block as a means of trans-
porting records between hard disk and core
memory.

156

chains that held records together in procedural database systems
also needed to be broken, freeing data from addresses, shipping
labels, chain codes, and other labels.327 Codd promised that a re-
lational database structure would serve a greatly expanded circle
of future users who were unskilled in data processing but able to
query databases.328 By no longer having to worry about how data
were stored, users would be better able to focus on ever more
flexible querying.

The database of the future was to be set up in such a way that
its content could also be confronted with questions that had not
even occurred to its creators when the database was planned.
Codd therefore set himself the task, first, of developing a simple
and general organization of the data in tables that could be linked
to one another via a primary key. Second, a management tool had
to be built for the consistent modification of entries and expan-
sion of the database. Finally, a query language had to be created
that satisfied mathematical requirements and yet was as close as
possible to the natural language of users who had no knowledge
of programming.

The more precise the description of the relational model, the
greater the uncertainty among database specialists who were fa-
miliar with conventional database models down to the last de-
tail.329 Programmers who wished to hold on to their privileged
role as professional navigators through the waters of complex
databases were especially confused and worried.330 They had every
reason to be. Their conviction that databases had to be operated
hierarchically and procedurally and had to contain hard-coded
links for fixed applications was repeatedly under attack by the
growing community of “relationalists.”331 This group argued that
the relational model represented data exclusively in their “natural
structures”; it had nothing do with the details of storage and ac-
cess. In a word, no representational garbage.332

157

By the mid-1970s, the central concepts for Codd’s relational
model had been determined.333 All data in a relational database
system had to be able to be represented by a set of named tables,
called relations. Each relation contained named columns. The or-
der of the rows did not matter, but each row was distinct and de-
scribed one instance of the entity described by the relation. In ad-
dition, each relation had a column called the primary key.334 What
data independence theoretically meant had become clear in the
discussions of the past years, especially in the debate with the sup-
porters of procedural database architecture. Exactly what it would
take to realize the goal of increased user independence, however,
had to await the actual development work.335

Between 1974 and 1979, the IBM Research Laboratory in San
Jose, California, was at work on a project that later became known
as “System R.”336 In a first phase, between 1974 and 1975, a Struc-
tured English Query Language (SEQUEL, later SQL) was developed
that would enable a future user to formulate his queries at an in-
teractive terminal.337 Great importance was attached to the human
factor, and various experimental studies were carried out on the
learnability and usability of the system. The second phase of the
project (1976 and 1977) was concerned with rebuilding the system
for multiple, concurrent users and adapting the existing SQL so that
it could be used on different systems. Users familiar with the PL/I
and Cobol programming languages were to have the same capabil-
ities and to use the same syntax as “ad hoc query users.”338 In 1978
and 1979, in-service tests were conducted at IBM itself and at three
customers, and users’ experiences were evaluated.

IBM clearly intended System R to be a major experiment in
user orientation. The construction of user-friendly interfaces339
and the system’s use of modules were the main strategies em-
ployed to achieve the project goals.340 However, the work on data
and user independence caused the developers many headaches.

158

While the second version of the query language seemed to work
quite well, the developers were still struggling with how to pro-
vide a functional replacement for the additional information on
structuring data used in procedural database systems without
burdening users with representational garbage. The problem of
performance could hardly be discounted either, because the pre-
requisite for a relational database was immense storage capacity.

The progress made from the mid-1970s onward on the design
and organization of very large memories was a response to the re-
lentless demands of the relationalists. It also provided a substan-
tial boost to the data warehouse without having to worry about
the data organization itself. The strategy of combining memories
with different speeds, capacities, and costs into a single system
was decisive for future memory development, that is, consist-
ently organizing individual memories according to their function
in the memory store of the computer. For example, the IBM 3850
mass storage system introduced in 1975 consisted of a hierarchi-
cally arranged, three-tier storage architecture.

In the case of large but slow mass storage (tapes or disks),
access time played a minor role. In a sense, it functioned like
the high-bay warehouse in the wholesale trade. In contrast, the
smaller direct access storage device (DASD) was much faster and
more flexible. It was akin to a picking room where orders from
a retail store are assembled into a transport unit. The DASD was
where the required data were prepared, new data were input, and
the programs currently in use were loaded. Above all this, how-
ever, hovered the fast main storage, which regulated the data
traffic to the processor and supported it.341 The previously embar-
rassing temporary storage had become a well-organized storage
structure. Not only did it serve all existing and planned database
architectures, but in the lowest, slow range it could also accom-
modate a large data and program archive. The need to link local

159

storage environments (similar to computers) over growing dis-
tances was obvious. Thus, in the 1980s, in addition to telecom-
munications links between computers, a patchwork of storage
technologies emerged that ensured the proper infrastructure for
linking data. Fast and slow, large and small, fixed and mobile, and
hard and soft memories were linked in countless combinations,
whether through a stable division of labor or only in a temporary
so-called master–slave relationship.342 Programs, data, and reports
were stored worldwide. Accumulated heaps of data were subject
to a continual loss of information content, producing as they did
so an impenetrable, non-compostable layer of data garbage that
rarely ever again rose to a level suitable for data processing.

The fourth fundamental development in storage was the
advent of hypertext and the heterogeneity of the stored data.
The concept of hypertext had a long history. Technically, it had
been understood since the 1960s as an ensemble of texts held

Figure 20: a well-organized storage landscape
(1975).

160

together with nodes and links, comparable, for example, to the
conventional linking services of an encyclopedia or a product
catalog with cross-references to individual “articles.”343 Hyper-
texts seemed to be of practical use wherever extensive docu-
mentation with thousands of pages was to be made accessible,
for example, in space travel, in the maintenance of an aircraft
carrier, or in the development of a large operating system. In
this context, hypertext structures could translate the conven-
tional linking capabilities of analog encyclopedias, catalogs, and
manuals into a computer-based structure. In terms of storage
technology, hypertexts had the advantage of low redundancy; in
terms of cognitive science, they resembled associative learning.
In short: hypertexts had something seductive or even anti-au-
thoritarian about them not only for their early advocates, like
Vannevar Bush, Douglas Engelbart, and Theodore Nelson. Per-
haps they could be used to discover new and unexpected associ-
ations. Or perhaps they were a tool for eliciting the information
that “the system” locked away in procedural databases and did
not intend ever to release. Ted Nelson had dreamed such dreams
in the 1967 Summer of Love.344 Certainly with hypertexts there
were no official and easily guarded entrances and exits. They
were structurally open, undermined authority, and encouraged
interpretive freedom and (at the extreme) critical thinking on
the part of students.

Trying to predict the theoretical and material consequences
that hypertext structures would have on a large scale was more dif-
ficult. Even California computer guru Jef Raskin warned against
the “hype in hypertext.” “If the details are kept sufficiently vague,”
Raskin said, hypertext would be a “wonderful, universally applica-
ble, powerful, natural, human-oriented model for organizing and
accessing knowledge.”345 Considerable discussion, however, was
required to specify the details.

161

This discussion was conducted with increasing urgency be-
ginning in 1987. Hypertext was now indeed hyped and a boom-
ing area. Microsoft reissued Ted Nelson’s cult book Computer Lib/
Dream Machines.346 Apple was working on HyperCard, and the
ACM had started a whole series of hypertext conferences.347 Jeff
Conklin of General Electric had just written an extensive tech-
nical report for the IEEE readership. In it, he asserted that hyper-
text systems could manage machine-based connections in and
between texts in a way that made the computer (yet again) a new
tool for communication and thought. From the perspective of a
computer scientist, he said, hypertext was a database method that
allowed direct access to data, entirely without “traditional” que-
ries. Hypertext was also a form of representation that combined in-
formal textual material with data from formal evaluation meth-
ods. Finally, hypertext offered an interface that allowed users to
attach “control buttons” to material of interest at will. For Conk-
lin, however, access, presentation, and interface were not three
separate applications of hypertext. They were a fully integrated
functionality.348

In his report, Conklin listed and compared no fewer than
20 existing hypertext systems. Their functionalities were im-
pressive.349 Raskin remained censorious, firing back a list of res-
ervations. Would the storage capacities be sufficient? Was there
enough bandwidth in the networks and sufficiently powerful
software for extensive hypertext applications? Who would pay for
the costs of “the central system” (sic!)? How would compatibility
between systems be ensured, and how would authors be paid? Ap-
parently, Raskin had learned to distinguish between development
and marketing during his work on the Macintosh. He certainly
no longer counted himself among the computer enthusiasts who
saw technical problems as something that would be solved “in the
natural course of things.”350

162

The debate was not going to end with the hypertext skeptics
drowning in the rising flood of data occasioned by the linking zeal
of the hypertext supporters. But framing the problem differently
might change the tone of the debate. After all, no one could over-
look the increasing amount of data on organizations’ hard drives.
But the problem of information management could be dealt with
regardless of the amount of data stored if it was described as a gen-
eral problem of information loss in organizations. That is exactly
what physicist and software specialist Tim Berners-Lee, working
at CERN (the European laboratory for particle physics, near Ge-
neva) tried to do in a proposal he wrote in 1989.351 In it Berners-Lee
proposed a distributed hypertext system. The impulse behind the
proposal was the constant loss of information “about complex
evolving systems” at CERN. This distributed hypertext was not in-
tended to establish a new data management system for new data.
Rather, it was about ensuring access to aging data sets in a con-
stantly changing organization based on information exchange.352

Long stretches of Berners-Lee’s proposal read like a refresher
course for CERN physicists. For the scientists, a clearer, hierar-
chically structured data storage system on the CERN computers
would naturally be essential to scientific success. Documented
knowledge was just as indispensable. At first, the idea of an unruly
linking technique to halt the informational entropy among for-
gotten or barely retrievable tables, data blocks, and lists sounded
a bit abstract. But Berners-Lee demonstrated great communicative
skill by showing that there was nothing in the specific IT require-
ments at CERN to contradict his organizational goal. For example,
because CERN was a distributed organization, access from remote
machines was essential. No one questioned the heterogeneity of
CERN’s computer landscape, which consisted of very different
types of systems, for example, “VM/CMS, Macintosh, VAX/VMS[,
and] Unix.” Authoritarian centralization and access control to

163

what was stored was therefore unthinkable because knowledge
from nuclear physics experiments started very small, could grow
very quickly, and had to be able to be combined with knowledge
from other experiments and research groups. Data that already
existed could not simply be deleted, as the data might take on a dif-
ferent meaning in light of new measurement results. In addition,
it had to be possible to annotate data and documents with private
and public comments, a customary practice in day-to-day nuclear
physics research. Copyright and data security, on the other hand,
were of secondary importance because the researchers considered
information sharing more important than secrecy, which in any
case did not correspond to the thinking style of the scientists asso-
ciated with CERN.353

Berners-Lee found a hearing among the scientists because he
reinterpreted the data flow problem as a data loss problem and
because he brought the IT requirements in line with the organiza-
tional requirements of CERN. In addition, he separated the storage
of data from its presentation and explicitly ignored the operating
logic of the individual machines. In this way, he accommodated
the actual heterogeneity of the data, the experiments, and the per-
sonnel at CERN.354 Berners-Lee’s proposal was quickly taken up and
implemented elsewhere. For example, in IEEE’s Computer, John
Noll and Walt Scacchi of the University of Southern California
pointed out that a distributed hypertext architecture would ena-
ble access to heterogeneous information repositories. Hypertext
combined a user interaction facet, a data representation facet, and
a data storage facet. The approach preserved the autonomy of re-
positories and users and also accommodated the heterogeneity of
data and machines. As such, the distributed hypertext architec-
ture constituted a powerful organizational tool.355

It is one of the peculiarities of history that the concept of a
distributed hypertext system for linking heterogeneous stored

164

content became attractive at the very moment when, in the com-
petition between different network architectures, protocols that
were able to deal particularly well with the heterogeneity of other
networks prevailed. Once a hypertext transfer protocol (http) was
added to the Internet protocol collection, networking, storage,
and linking techniques for data, machines, and organizations be-
gan to mutually support one another in an unprecedented way.356

“The problem of information loss may be particularly acute at
CERN,” Berners-Lee had noted in his original proposal. But CERN
was nothing if not “a model in miniature of the rest of the world
in a few years time.”357 The global and local interconnection of com-
puters, their user-oriented differentiability, and flexible access to
stored data had in the 1990s woven a fabric of machines, data,
organizations, and actors that structured the order and mode of
communication of the World Wide Web as computer-supported
“distributed hypertext.” Four decades after UNIVAC issued its invi-
tation, the world had arrived in the computer.

165

7	 Switching off

The story of how digital reality has emerged over the course of
four long decades holds some surprises. In concluding, I would
like to note a few of them. What I find particularly striking is the
disappearance of computation in the computer. In the early 1950s,
computing had been stowed away in a black box, which was only
to be opened in case of emergency. Computing was made invis-
ible and downgraded in importance as sorting, classifying, and
decision-making were given higher priority. This turn of events
created a demand for people who understood something about
programs and machines. It is all the more surprising how these
specialists of a new cultural technique were denigrated as “code
monkeys” and at the same time kept as far away as possible from
truly interesting questions. For mathematicians, managers, users,
engineers, system developers, and project leaders, it was enough
for programmers to attend to the disciplined implementation of
instructions that were supposed to tame the computer and deter-
mine what users could do. The only annoyance was that programs
had to be rewritten again and again and adapted to the respective
tasks and machines. Standardized program libraries would have
been very nice. But this desire proved elusive even after the hard-
ware and software markets were separated. At the same time,
computer engineers and administrative cadres underestimated
the problem that arose on both sides of the computer in format-
ting input and handling output. Early applications of computers
made it surprisingly clear that preparation in particular – that is,
acquiring, formatting, and organizing data – involved enormous
amounts of work. It took less time to process data than it did to
make the world machine-readable. But it soon became clear that

166

even the output was less obviously useful than the payroll checks
printed by the very first computers.

The politics and economics of digital space are arguably no-
where more visible than in the development of operating sys-
tems. This book links the efforts to develop a form of computer
use called time-sharing in the 1960s with the development of
rules that separated the permitted from the prohibited, moni-
tored users’ behavior, and protected their rights. Costly comput-
ing time was divided among different users in such a way that
the computer was always available to them when they needed it.
According to dictum, users should have to wait as little as possi-
ble and the machine should never be idle. However, the “system”
had to enforce the operating rules and ensure that users, data, and
programs did not interfere with each other’s work. Operating sys-
tems structured digital space with short-term access privileges,
well-conceived interventions, and rule-based interruptions. The
systems were able to distribute computer use over time and make
the most of expensive computing capacity.

If the world was to be moved into the computer, then digital and
analog realities had to be synchronized. Synchronization was not al-
ways as demanding as at NASA’s Mission Control Center. However,
the example impressively shows that computers have to be freed up if
they are to interact with the analog world in real time. With its clearly
delineated staff responsibilities, complex organizational routines,
specialized technical high-speed zones, and well-equipped waiting
rooms, the system in Houston was tightly coupled with a globally op-
erating and locally focused media operation. Houston demonstrated
computerized control of spaceflight based on personnel- and equip-
ment-intensive monitoring of computers, with the Mission Control
Center bringing not only the Moon but also Earth to flight controller
consoles equipped with voice radio, pneumatic mail, television, and
telephones as well as to living room screens.

167

Since the early 1950s, a key question had been how to create
sufficient processing capacity on the one hand and how to deal
with the expected overcapacity of computers on the other. Only
when there was more “space” in computers could further pro-
cesses be shifted to them, and only when this space was fully uti-
lized would the business be worthwhile. Manufacturers had no
choice but to make bold assumptions about the future pull of dig-
ital space and to formulate corporate strategies to match. Around
1960, undisputed market leader IBM had made the processor the
starting point for all strategic decisions. This example shows that
strategies can be convincing and successful, even if they cannot
fulfill their promises for good reasons. The situation was not
much better when it came to demand-side estimates of future
computer use. The customer’s wish list – what computers should
be able to do and how digital space should be set up – was con-
stantly expanding and constantly unfulfilled. At the same time,
something unexpected was gained, or one could at least assume
that it would be possible to continue work on a next project. In
digital reality, the project became the means of productively me-
diating between promises and expectations.

The surprise that comes from observing the interconnectiv-
ity of computers that began in the 1970s has little to do with dis-
appointed expectations and much to do with unintended conse-
quences. Within a decade, a patchwork of networks had emerged.
Though some of these networks were notable for their clever and
carefully conceived design, none could prevail over the others to
achieve all-inclusive networking in digital space. The protocols
conceived in the early 1970s in experimental networks belonging
to the US Department of Defense that ended up winning could
not have been anticipated as late as the late 1980s. Their ultimate
success was due neither to their special performance nor to a par-
ticularly military orientation. Rather, it was due to the fact that

168

they were based on local solutions and operated as a network of
networks, that is, as the Internet.

It was easy to hold California counterculture responsible for
the differentiation that arose in computing, which personalized
the computer and thereby brought about the personal computer.
My reading leads to a different conclusion. Neither the displace-
ment of leisure activities (hobbies) nor of domestic concerns
(home) into the computer were the decisive factors behind the
goals for differentiation. Rather, it was the shift of small, everyday
office work into machines equipped with microprocessors that
turned the computer into a personal computer in the 1980s.

Finally, the development of the storage capacity of digital space
calls for reinterpretation. It started with auxiliary memory, which was
used as a notepad for intermediate results, so to speak. It continued
through the concatenation of data in database management of the
1960s and its liberation in the relational database table of the 1970s,
to the organization of interacting storage systems and the growing
problem of data garbage. Links set by users were understood to be a
means of mitigating loss of information in organizations.

My story of how the world came into the computer just hap-
pens to end at a moment when some people were proclaiming
the end of history and others the beginning of a new world order.
But it is not such announcements that determine the end of this
story. Rather, it is that the question of how digital reality arose and
became indispensable is simply less compelling. Newcomers to
digital space toward the end of the 20th century encountered a
strongly structured arrangement of space, time, and objects. Now,
when data met databases, protocols interacted with protocol fam-
ilies, programs encountered operating systems, and users inter-
acted with each other, the concern was no longer how to make the
transfer into the computer, but the self-evidence and the inde-
pendence of the digital world.

169

In the 1990s, the focus on the “emergence of a digital reality”
was replaced by a focus on the “autonomy of digital space.” The is-
sue was initially approached as a conventional case of technology
out of control, for example, in the aftermath of the 1987 stock mar-
ket crash, caused in part by program trading gone awry.358 Soon,
however, talk of autonomy shifted to fundamental considerations,
sometimes viewed positively, sometimes with apprehension.
Forms of individual and collective autonomy, which could be de-
veloped and cultivated in digital space, were not alone in booming
with the blossoming of the World Wide Web. Computers and com-
puter connections also became autonomous. Autonomous search
engines plowed through hyperlinked data garbage and indexed
everything they found. Their lists of finds were sorted by algorithms
that also appeared to have a high degree of autonomy. Ultimately,
the “Y2K problem” sparked widespread fear about the autonomy
of digital reality. No one could say with certainty what computers
would do on 1 January 2000, when their current year number took a
step backward from 99 to 00 for the first time in history, even before
the end of the millennium, and thus experienced a veritable histor-
ical break. Shortly thereafter, a policy paper from IBM heightened
the uncertainty of dealing with computer autonomy by referring to
a looming “software complexity crisis.” In the near future, systems
would become so complex that their interactive components could
not be installed, configured, optimized, maintained, or assembled
even by highly specialized systems managers. The only way out of
the dilemma would be systems that managed themselves.359

The fact that it was precisely the autonomy of digital reality
that now gave people pause is, in my view, a historically significant
change that cannot be reconciled with the narrative of the great
move of the world into the computer and therefore marks its end.

75 47 25 	 CC	 Well, what mode are you in on your computer
now?

75 47 27 	 C	 I just went from Prelaunch to Catch-Up. That
turned the Comp light OFF. Let’s see if it comes
back on now. Okay. It’s back on. Now we’ll turn the
whole computer OFF and see what happens.

75 47 53 	 C	 I still get the Computer Running Light when I’ve
got the switch OFF.

75 48 00 	 CC	 You still have the Computer Running Light with
the switch OFF?

75 48 02 	 C	 That’s affirmative.

Voice tape transcription between the ground station (CC) and astro-
naut (C) during the Gemini 4 mission, NASA 1965, p. 305.

171

Acknowledgments

In the fall of 1997, I gave my first lecture on the history of comput-
ing. Because the hype around the net was just beginning to take
hold, I tried to understand the history of the Internet and stum-
bled into a complex of topics that were new to me. In computer
history, then as now, it was possible to discover new things all
the time. Since then, in seminars and at conferences, in scattered
journal articles and many conversations, I have tried to unpack is-
sues in and around the history of computing until a stable picture
temporarily emerged for me. One day, Daniela Zetti, who enjoyed
taking part in my attempts at interpretation, abruptly switched
from my subjunctive to her imperative: “People should know
how the world got into the computer. Write it down!” Since then,
Daniela has accompanied the project with endless patience and
good humor, generously overlooking fruitless starts to chapters
in the confidence that subsequent sections would simply make
the bumpy beginnings superfluous. Where new connections ap-
peared, she urged me follow them up and sometimes even make
them the focus. I am deeply grateful for her guidance.

I also owe a great debt of gratitude to Gisela Hürlimann. She
persistently reminded me over the long months that writing is
a deeply interesting endeavor and can sometimes even be en-
joyable, but that I must above all spare some thought for my im-
agined readers and not abuse their time. She insisted on clarity
and demanded proof where I preferred to rely on memory. The
files that I sent her for preliminary reading came back at all hours
in such a way that, color-blind as I am, there was no doubt what I
needed to do, for example, where the text needed further clarifi-
cation and where it was best keep things simple. For particularly

172

dense passages where efforts at decluttering would only have left
black holes, I could count on the support of Maya Wohlgemuth.
Her fantastic research skills ensured that the technical bits were
either solid or could at least be elegantly sidestepped.

I also had the opportunity to float some of the ideas in more
recent lectures, for example, at the Digital Culture Research Lab
in Lüneburg, the Collegium Helveticum in Zurich, the Center for
Contemporary History Research in Potsdam, on Monte Verità in
Ascona, and at the annual conference of the Society for the His-
tory and Philosophy of Computers in Brno. I received valuable
suggestions from Lutz Wingert, Hansjörg Siegenthaler, Wilfred
van Gunsteren, Michael Hampe, Lea Haller, Hannes Mangold, Lea
Pfäffli, Luca Frölicher, Nick Schwery, Mirjam Mayer, Luca Thanei,
Claus Pias, Martin Warnke, Liesbeth de Mol, Frank Bösch, Monika
Dommann, Renate Schubert, Ricky Wichum, and Thomas Hen-
gartner. Forgive me for being unable to follow up each pointer in
detail and from time to time having to fall back on unsupported
opinion. Erich Projer read the chapters critically and, after care-
ful reflection, picked up the phone time and again to tell me that
such-and-such was the case or that there were structural weak-
nesses that required further work or cuts. He would perhaps now
say that this was not often necessary. Jakob Tanner, too, read the
whole book in statu nascendi and, also after careful reflection,
pointed out a great many possibilities for elaboration, many of
which I managed to avoid. He might now say there are others.

To Simone Roggenbuck I owe infinitely more than I can say.
She saw me in every possible state of (dis)aggregation, thought
with me, let me know when I was wrong, and never lost her sense
of humor. Her conviction that “the little book” could happen was
decisive. Simone, this is for you.

173

Postscript to the English edition

I like this translation of my attempt to recount the emergence of
digital reality. Not only because the editing process allowed me
to eliminate at least a few errors, but also because Giselle Weiss
has done an admirable job of translating. For me, as author, the
new text represents a more elegant version of the thoughts that
consumed so much of my energy to write that at times I could not
muster the courage needed for final deletions.

Naturally, any reference to new work that has appeared since
the publication of the German edition is missing. The book still
provides no critical review of the literature. In “Computer His-
tory – the Pitfalls of Past Futures,” Daniela Zetti and I consider
idiosyncracies in the history of computers since the late 1950s.
There we offer an answer to the question of when historical-crit-
ical studies of computers and computer programs really make a
difference, and we have at least thought carefully about various
ways of relating computer history.

Zurich and Locarno, in the second year of the pandemic

174

Photo credits

	 1:	 Alamy Stock Photo
	 2:	 CBS Photo Archive/Getty Images
	 3:	 Orlando/Hulton Archive/Getty Images
	 4:	 ETH-Bibliothek Zurich, Bildarchiv/Stiftung Luftbild Schweiz/Photographer: Swissair
	 5:	 ETH-Bibliothek Zurich, Bildarchiv/Photographer: unknown
	 6:	 www.digibarn.com/collections/ads/UNIVAC-50s/divide-by-zero/zero.jpg © Digibarn

Computer Museum
	 7:	 Underwood Archive Photos/Getty Images
	 8:	 www.census.gov/library/photos/1950_08010.html
	 9:	 Lesser and Haanstra, pp. 140, 141, 144.
	10:	 Courtesy of the Computer History Museum/Courtesy of IBM Archives
	11:	 School of Computer Science, University of Manchester
	12:	 Bettmann/Getty Images
	13:	 Courtesy of IBM
	14: 	 Information Technology Division (University of Michigan) records, Bentley Historical

Library
	15:	 Popular Electronics, Mai 1975, p. 25
	16:	 The LIFE Images Collection/Getty Images
	17:	 Courtesy of the Computer History Museum IBM/Apple
	18:	 Bachman and Williams 1964, p. 415
	19:	 Bachman and Williams 1964, p. 414
	20:	 Johnson 1975, p. 510

175

Notes

	 1	 The 5,000 “man-years” required between 1961 and 1965 to develop the OS 360 are
the stuff of legend. Frederick P. Brooks’s discussion of the “mythical man-month” puts
the “man-year” into perspective. Brooks 1955.

	 2	 I thank Daniela Zetti for the reference to Michael S. Mahoney’s question. See Ma-
honey 2005, p. 128, and Mahoney 2011.

	 3	 Spitzer 2012. Jacket copy at www.droemer-knaur.de/buch/manfred-spitzer-digi-
tale-demenz-9783426300565 (accessed 25 August 2021).

	 4	 See the ACM Digital Library at http://dl.acm.org/ (accessed 25 August 2021).
	 5	 Oral History Collection at www.computerhistory.org/collections/oralhistories/ (ac-

cessed 25 August 2021).
	 6	 Misa 2017.
	 7	 See www.youtube.com/watch?v=j2fURxbdIZs (accessed 25 August 2021), Reming-

ton-Rand Presents the UNIVAC. See also Eckert et al. 1951b.
	 8	 For a conventional overview of computer history with a strong focus on entrepreneuri-

al issues, see Campbell-Kelly et al. 2014. On the Manhattan Project, see Gosling 1994.
On the role of electronic computers in the Manhattan Project, see Pepaez 1999. For an
early description of ENIAC, see Goldstine and Goldstine 1996 (1946). On the impor-
tance of electronic computers in cryptology, see Sale et al. 2000. On the demilitariza-
tion and commercialization of computers in the transition from ENIAC to UNIVAC, see
Stern 1981.

	 9	 See www.youtube.com/watch?v=j2fURxbdIZs (accessed 25 August 21), Reming-
ton-RAND Presents the UNIVAC. On the logistics of data, see Gugerli 2009a.

	 10	 www.youtube.com/watch?v=j2fURxbdIZs (accessed 25 August 21), Remington-RAND
Presents the UNIVAC. Emphasis D.G.

	 11	 www.youtube.com/watch?v=j2fURxbdIZs (accessed 25 August 21), Remington-RAND
Presents the UNIVAC.

	 12	 McPherson and Alexander 1951; Gray 2001.
	 13	 Heide 2009.
	 14	 In 1956, Walter Cronkite was able to switch quite naturally to the “UNIVAC corner”

for the latest figures on the election. Again, UNIVAC predicted a win for Eisenhower,
and again the computer was right. www.youtube.com/watch?v=v7K8MW8wQWs (ac-
cessed 25 August 21).

	 15	 www.youtube.com/watch?v=FMXT4f8C63A (accessed 25 August 21).
	 16	 “The world in a machine,” in the words of Paul Edwards. Edwards 2000.
	 17	 See the 1947 demonstration of the “Mechanische Rechenmaschine Brunsviga”

(Brunsviga mechanical calculating machine) at www.youtube.com/watch?v=o66EWlZ�-
Zaok (accessed 25 August 21).

	 18	 For the history of the Turing machine, see Herken 1988; on John von Neumann, see
Glimm et al. 1990.

	 19	 The disputes between IBM and Howard Aiken surrounding the building of the Mark I at
Harvard University continue to inspire books to this day. See Cohen and Aspray 2000.

	 20	 www.youtube.com/watch?v=j2fURxbdIZs (accessed 25 August 21).

https://www.youtube.com/watch?v=o66EWlZZaok
https://www.youtube.com/watch?v=o66EWlZZaok

176

	 21	 “To meet this need for high-speed data processing, the scientist and technicians of
the Eckert-Mauchly division of Remington Rand have created a miracle of electronic
development: UNIVAC, a complete electronic system for sorting, classifying, com-
puting, and decision-making. Acting upon alphabetical as well as numerical data at
incredible speeds and with complete accuracy” (emphasis D.G.), www.youtube.com/
watch?v=j2fURxbdIZs (accessed 25 August 21).

	 22	 See the ratings manuals of the Vita life insurance company in the archives of Zürich
Versicherungen: Z-Archiv, Q 129 204 30343:1, VITA: Tarifbücher div. Versicherungsfor-
men 1952–1991. My thanks to Luca Frölicher for pointing these out to me. On “actuar-
ial practice” in the insurance business, see Stadlin 2010.

	 23	 The problem involved double glazing 10 windows in a gymnasium. The windows had
a total light size of 3.20 × 1.60 m and “32 B 4/4 panes measuring 37.5 × 77 cm” per
window. The glazing required 12 kilograms of putty, and a 25 kilogram vat of putty cost
12 francs. The problem cannot be assumed to be taken directly from daily workshop
calculations. Hirzel and Käfer 1943, pp. 25–29.

	 24	 Stahel 1950, pp. 91–104.
	 25	 Reed 1942.
	 26	 Mindell 2002, pp. 87–91.
	 27	 This kind of geometry-based “computing” was known since the mid-19th century from

the polar planimeter, which was used to determine the area of an irregular map sec-
tion by tracing its edges. Amsler 1856; Amsler and Erismann 1993; Bruderer 2015.

	 28	 Mayer 1908.
	 29	 Failure Is Not an Option. A Flight Control History of NASA, 2014, www.youtube.com/

watch?v=7f51Jzm7M4w28:08 (accessed 25 August 21).
	 30	 Crank 1947, Owens 1986, Aiken 1975 (1937), Cohen and Aspray 2000.
	 31	 Eckert et al. 1945; Goldstine and Goldstine 1996 (1946); Van der Spiegel et al. 2000.
	 32	 “The features to be incorporated in calculating machinery specially designed for rapid

work on scientific problems, and not to be found in calculating machines as manufac-
tured for accounting purposes, are the following.” Aiken 1975 (1937).

	 33	 Turing 1952.
	 34	 Neumann 1945, p. 355.
	 35	 For applications to racial research and heredity, see Füssl 2010, p. 109. For the broader

fields of application, see Zuse 1948.
	 36	 Eckert et al. 1951a.
	 37	 “True to its name, Universal Automatic Computer, the UNIVAC system is capable of

handling data processing or calculation in virtually all fields of human endeavor.” Eck-
ert et al. 1951a, p. 11.

	 38	 Aiken 1975 (1937). See also Bashe 1999, p. 71.
	 39	 Eckert et al. 1951a, p. 12.
	 40	 Eckert et al. 1951a, p. 12.
	 41	 Eckert et al. 1951a, p. 12.
	 42	 Perret, Jacques to Christian de Waldner, general manager of IBM France, 16.4.1955.

See https://journals.openedition.org/bibnum/534 (accessed 25 August 21).
	 43	 Perret apparently had not checked the first edition of the Dictionnaire de la langue

française, which was published between 1863 and 1872.
	 44	 Zetti 2008; Zetti 2009.
	 45	 Zuse 1980. See also Bruderer 2010; Tobler 2001.

https://www.youtube.com/watch?v=j2fURxbdIZs
https://www.youtube.com/watch?v=j2fURxbdIZs
www.youtube.com/watch?v=7f51Jzm7M4w28:08
www.youtube.com/watch?v=7f51Jzm7M4w28:08

177

	 46	 Furger and Heintz 1997.
	 47	 Rutishauser et al. 1951.
	 48	 Stiefel 1954, p. 29. Emphasis in the original.
	 49	 Stiefel 1954, p. 30.
	 50	 Stiefel 1954, p. 32.
	 51	 “The job of planning and programming problems may well become the bottleneck in

operation.” Carr 1952, p. 238.
	 52	 Johnson 1952, p. 78.
	 53	 The 1953 project proposal to build the Ermeth, cited in Bruderer 2015, pp. 566–568.
	 54	 Gugerli 2009a.
	 55	 Rutishauser 1952; Rutishauser 1956, p. 2.
	 56	 Carr 1952. See also Bemer 1957b.
	 57	 Zuse 1936.
	 58	 Ridgway 1952.
	 59	 On Fordist culture in mathematics in the early 20th century, see Heintz 1993.
	 60	 Wexelblat 1981.
	 61	 Kemeny and Kurtz 1964.
	 62	 Studienzentrum für Administrative Automatisierung 1966.
	 63	 See Studienzentrum für Administrative Automatisierung 1966; Palormo 1967; Jensen

1967 and Willoughby 1971.
	 64	 Studienzentrum für Administrative Automatisierung 1966, p. 70.
	 65	 Levine 1961.
	 66	 Brown and Ridenour 1953.
	 67	 Sheldon and Tatum 1951, p. 30.
	 68	 Dover 1954, p. 172.
	 69	 “Before the data could be reduced, that is, reduced on IBM machines or desk calcula-

tors, it had to be processed; that is, put into a form where it could be handled readily
and easily by the IBM card programmed calculators.” Dover 1954, p. 172. On IBM’s
electronic punched-card computer, see Sheldon and Tatum 1951.

	 70	 Gugerli 2012.
	 71	 Dover 1954, p. 173.
	 72	 Dover 1954, p. 178.
	 73	 Regarding the rigorous formatting standards for automated input in data-processing

systems in business, see Eldredge et al. 1957.
	 74	 McPherson 1953, p. 52.
	 75	 McPherson 1953, pp. 52–53.
	 76	 McPherson 1953, p. 52.
	 77	 Welsh and Lukoff 1952, p. 47.
	 78	 Welsh and Lukoff 1952, p. 47.
	 79	 Hopper 1952, p. 244.
	 80	 Aspray 1994.
	 81	 Austrian 1982; Campbell-Kelly 1998; Yates et al. 2001; Yates 2005.
	 82	 Lesser and Haanstra 1957, p. 140.
	 83	 Simon 1962.
	 84	 According to an IBM strategy group meeting held in 1961, it would be impossible

to develop computers that could simultaneously serve the military and commercial
sectors at competitive prices. Haanstra et al. 1983 (1961), p. 18.

178

	 85	 On the difficulties of quantifying computer costs, see Haanstra et al. 1983 (1961),
p. 23.

	 86	 See Heintz 1993 on how deeply the idea of the assembly line was anchored in the
minds of computer engineers.

	 87	 Lesser and Haanstra 1957, p. 140.
	 88	 Lesser and Haanstra 1957, p. 140.
	 89	 Lesser and Haanstra 1957, pp. 140 and 141.
	 90	 Lesser and Haanstra 1957, p. 144.
	 91	 McCarthy 1959; Teager and McCarthy 1959.
	 92	 McCarthy 1959.
	 93	 McCarthy 1959.
	 94	 McCarthy 1959; Teager and McCarthy 1959; Science News-Letter 1961.
	 95	 Corbató et al. 1962, p. 335.
	 96	 www.youtube.com/watch?v=Q07PhW5sCEk.
	 97	 Bemer 1957a showed that this point was arguable.
	 98	 www.youtube.com/watch?v=Q07PhW5sCEk.
	 99	 On the programmer’s perspective, see Bauer 1958.
	100	 See also Corbató et al. 1962, p. 335.
	101	 On the priority problem in time-sharing, see Greenberger 1966.
	102	 Corbató 1964. Anonymous 1964. On the supervisor, see also Vyssotsky et al. 1965.
	103	 Dennis 1968. See also the chapter on connecting, setting boundaries, and storing.
	104	 Fano 1967.
	105	 Fano and Corbató 1966.
	106	 Tanenbaum 2014, pp. 6–7. In the sections that follow on time-sharing and operating

systems I have drawn on material from Gugerli and Mangold 2016 and adapted it to
the present context.

	107	 McCarthy (1983), Reminiscences on the history of time sharing, www-formal.stanford.
edu/jmc/history/timesharing/timesharing.html (accessed 25 August 21).

	108	 Klossner 1980.
	109	 Sumner et al. 2000.
	110	 Kilburn et al. 1962.
	111	 Kilburn et al. 1962.
	112	 Brooks 1995.
	113	 Corbató et al. 1972; Corbató and Vyssotsky 1965; Vyssotsky and Corbató 1965.
	114	 Corbató and Vyssotsky 1965.
	115	 Luhmann 1966, p. 9. See also earlier work by Luhmann 2007 (1964).
	116	 Hausammann 2008.
	117	 On the effect of forms, files, and filing systems on design structure and form in bureau-

cratic systems, see Vismann 2001.
	118	 Luhmann 1966, pp. 9–10.
	119	 March et al. 1958, pp. 142–150. See especially Simon’s book on the new science of

management decision. Simon 1977 (1960) and Simon 1960 as well as Luhmann 1968.
	120	 According to Chester Barnard, management theorist and later president of the Rock-

efeller Foundation and chairman of the National Science Foundation, in a foreword to
Herbert A. Simon’s book on administrative behavior. Simon 1976 (1946), p. xlvi.

	121	 Luhmann 1966, p. 18.
	122	 Gugerli 2010.

http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html
http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html

179

	123	 Campbell-Kelly 2003; Egger 2013.
	124	 ETH-Bibliothek 1968.
	125	 Girschik 2010. The mail order business began considering the use of computers very

early on. Martin 1954.
	126	 Haigh 2001. Haigh’s argument was anticipated by Daniel Bell; see Bell 1967 and Bell

1973.
	127	 Dearden 1964; Dearden 1965; Dearden 1972.
	128	 Girschik 2010.
	129	 Haigh 2001.
	130	 Not even chance was left to chance, as research on computer programming to produce

random numbers shows. Certaine 1958; Greenberger 1959; Green et al. 1959; Coveyou
1960; Greenberger 1961.

	131	 Kranz 2001; Mindell 2008. Meanwhile, “Houston” has also become a site of national
historical interest: Launius 2009.

	132	 On the culture of electronic surveillance and control see Gugerli and Mangold 2016.
	133	 Gates and Pickering 1965.
	134	 See longtime flight director Gene Kranz’s mantra “Failure is not an option” (probably ex

post). Kranz 2001.
	135	 Johnstone 1969.
	136	 Tomayko 1988, pp. 249–250.
	137	 Tomayko 1988, p. 252.
	138	 Hamlin 1964, p. A2.2-1; Donegan et al. 1964. The Goddard Space Center also claimed

to be using real-time computing. See, for example, Gass 1961 and Adams and Federico
1964.

	139	 James 1981, p. 422.
	140	 Tomayko 1988, p. 251.
	141	 Hutchinson 2012.
	142	 Philco 1967. “The manual is primarily an orientation/indoctrination guide and, in ad-

dition, furnishes a reference source for information pertinent to the MCC-H systems,
subsystems, and major components.” Philco 1967, pp. v/vi.

	143	 Philco 1967, passim.
	144	 Philco 1967, para. 3-3-1-4, p. 3.12.
	145	 On pneumatic tube mail at MCC Houston see Philco 1967 para 2-3-7, p. 3.9. On the

display of TV images see Hutchinson 2012, “The flight controller’s console.”
	146	 See Philco, para 2-2-2, p. 2.6. On time management in the computer center under

real-time computing conditions see also Johnstone 1969, p. 29.
	147	 Bhola et al. 1968.
	148	 Philco 1967, para 2-2-2, pp. 3.3–3.4. See also Hutchinson 2012, p. 3.
	149	 Philco 1967, para 1–4. On Eidophor, see Meyer 2008.
	150	 On the meaning of “closed worlds” in computer history, and in particular the electronic

SAGE project, see Edwards 1996. Stanley Kubrick’s Dr. Strangelove or: How I Learned
to Stop Worrying and Love the Bomb (1964) dramatically satirizes events in the war
room.

	151	 Apollo Flight Journal, Apollo 8, Day 3, 055:02:46 to 055:28:34, https://history.nasa.
gov/afj/ap08fj/09day3_green.html (accessed 25 October 2016). On the broadcasting
range of space television, see Rosenfelder 2003.

https://history.nasa.gov/afj/ap08fj/09day3_green.html
https://history.nasa.gov/afj/ap08fj/09day3_green.html

180

	152	 Apollo Flight Journal, Apollo 8, Day 3, 055:02:46 to 055:28:34, https://history.nasa.
gov/afj/ap08fj/09day3_green.html (accessed 25 October 2016).

	153	 To Lovell’s comment that a traveler at that height would not be able to tell wheth-
er Earth is inhabited or not, Mike Collins responded (from the CapCom console in
Houston): “Don’t see anybody waving; is that what you are saying?”, Apollo Flight
Journal, Apollo 8, Day 3, 055:18:22 to 055:18:31, https://history.nasa.gov/afj/ap08fj/
09day3_green.html (accessed 25 October 2016).

	154	 On the role of the mirror stage in the development of ego function, see Lacan 1986
(1948). At the end of the 1960s, apparatus theory asserted that the attention of the
audience resulted from a blind spot of the media installation (see Rosen 1986). The
TV broadcast from Apollo 8 in the control room at Houston and on TV sets around the
entire world undermined this cinematic apparatus, insofar as it demonstrated self-re-
flection from outer space. On the satellite view, see Sachs 1994.

	155	 Boulding 1966; Fuller 1969.
	156	 The fact that this is a communicative performance by the control center does not

diminish the contribution of its real-time computers to the production of local syn-
chronicity between different, asynchronous systems. On the relationship between
simultaneity and synchronization, see Luhmann 1993, p. 119. NASA’s accountability
made possible ex post other forms of (visual) simultaneity, such as the graphical syn-
opsis of both the pre-calculated soft and elegant landing of the Apollo 11 mission on
the Sea of Tranquility and Neil Armstrong’s rodeo-style “manual” approach to landing
under the threat of depleting fuel. Mindell 2008, p. 227.

	157	 Frei 2008; Kraushaar 2000.
	158	 See IBM’s strategic development goals as formulated by the SPREAD Task Group in

late 1961. Haanstra et al. 1983 (1961), p. 6.
	159	 Unless long hair was understood to be part of a syndrome of excessive independence

and mild paranoia, as Dick H. Brandon maintained at the 1968 ACM national con-
ference. Brandon described programmers during an ACM policy debate on managing
the economics of computer programming as egocentric, slightly neurotic, bordering
on mildly schizophrenic. The evidence, he said, was the simultaneous appearance of
beards and sandals and other symptoms of rugged individualism and nonconformism,
as found in programmers. Brandon 1968, p. 333.

	160	 At least that was the claim made inside the ACM with reference to Moody’s Computer
Industry Survey Fall 1967. Brandon 1968, p. 332.

	161	 And giving rise to a whole series of discussions. Morton and McCosh 1968; Miller
1969; Boulden and Buffa 1970; Jones 1970.

	162	 According to Denning 1971, p. 175, the term generation became commonplace after
1964, the “year in which third generation machines were announced.” Originally, the
term had applied only to hardware.

	163	 Haanstra et al. 1983 (1961), p. 6.
	164	 IBM even constructed the family tree of processors: www.computerhistory.org/revolu�-

tion/mainframe-computers/7/162/573 (accessed 25 August 21).
	165	 Haanstra et al. 1983 (1961), p. 8.
	166	 Haanstra et al. 1983 (1961), p. 14.
	167	 Haanstra et al. 1983 (1961), p. 9.
	168	 www.computerhistory.org/revolution/mainframe-computers/7/162/575?position=0

(accessed 25 August 21).

https://history.nasa.gov/afj/ap08fj/09day3_green.html
https://history.nasa.gov/afj/ap08fj/09day3_green.html
https://history.nasa.gov/afj/ap08fj/09day3_green.html
https://history.nasa.gov/afj/ap08fj/09day3_green.html
https://www.computerhistory.org/revolution/mainframe-computers/7/162/573
https://www.computerhistory.org/revolution/mainframe-computers/7/162/573

181

	169	 Even in 1965 it was no secret that computer performance was also defined by operat-
ing systems, memory access, applications software, and peripherals.

	170	 See Moore 1965. On Moore’s law as a possible instance of technological determinism,
see Ceruzzi 2005.

	171	 Haanstra et al. 1983 (1961), p. 18.
	172	 Grosch 1953, p. 310. Grosch’s rather intuitively formulated hypothesis of economies

of scale was confirmed by Knight (1966) after considerable experimental effort. See
also Solomon 1966. It was not until the late 1970s that people began to second-guess
Grosch. Cale et al. 1979 showed that the price–performance ratio could be predicted
only for mainframes, not for small computers. The original validity of Grosch’s claim
may have stemmed from the fact that IBM’s pricing was guided by his observation,
such that in 1966 Knight could only measure what IBM was compelled to specify
according to “Grosch’s law.” With the IBM 360/20, which was not originally planned,
IBM launched its own competing minicomputer product in the mid-1960s, manufac-
tured by IBM Germany. Pugh et al. 1991, pp. 445 and 639.

	173	 Voelcker 1988.
	174	 The “IBM 1060 data communications system” announced in 1963 served this purpose.

It was basically a printer with a keyboard. The IBM 1050 was connected to a telephone
line via a modem and could either receive or transmit in half-duplex mode. See Camp-
bell-Kelly 1988, p. 224.

	175	 Gorn 1966.
	176	 “Ordinary telephones” was a term intended to downplay user–computer interaction

at a distance. See, for example, Merrill et al. 1963, p. 622. In Haanstra et al. 1983
(1961), the term communication occurs primarily in connection with the term console,
while transmission occurs in the sense of “transmission checking” in “input/output
control systems.” “Teleprocessing” applications are said to require integration into a
centralized data processing center.

	177	 The confusion was apparently so great that around 1970, efforts were made to classify
operating systems with the help of a technical description. See Katzan 1970. CDC
attempted to help with a tree diagram and an annotated table. CDC 1976.

	178	 Poole and Waite 1969, p. 22.
	179	 Brandon 1968.
	180	 Dijkstra 1968.
	181	 Anonymous 1968.
	182	 Poole and Waite 1969.
	183	 The alternative response to IBM’s System/360 was to exploit the compatibility gap

created by IBM. Honeywell introduced an offering compatible with IBM computers
that were no longer supported by System/360. Following the introduction of IBM’s
System/370, Honeywell was able to continue its independent development, whereas
RCA stopped making computers. For further details, see Gandy 2014.

	184	 RCA 1965. www.computerhistory.org/brochures/full_record.php?iid=doc-4372956
eb9810 (accessed 25 August 21).

	185	 Zetti 2014, pp. 17–53 on the ultimate RCA videorecorder.
	186	 Humphrey 2002, p. 59.
	187	 Humphrey 2002, p. 61.

https://www.computerhistory.org/brochures/doc-4372956eb9810/
https://www.computerhistory.org/brochures/doc-4372956eb9810/

182

	188	 Wijngaarden et al. 1969, pp. 79–80. “Minority report” in Algol Bulletin 31, March
1970, http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/
P111.HTM (accessed 25 August 21).

	189	 Campbell-Kelly et al. 2014, pp. 178–182. For a contrasting view, see Haigh 2010.
	190	 Wijngaarden et al. 1969, p. 79. “Minority report” in Algol Bulletin 31, March 1970,

http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/P111.
HTM (accessed 25 August 21).

	191	 Haigh 2010, p. 5.
	192	 See Gugerli 2005.
	193	 Dijkstra 1972.
	194	 Dijkstra 1972, pp. 859–860.
	195	 Dijkstra 1970. Structured programming relied on the division of programs into individ-

ual, easily verifiable sequences with clear starting and terminating points. This facili-
tated assessment and debugging of programs.

	196	 Bienek and Kreibich 1970, p. 416.
	197	 Kneipp 1880; Kneipp 1889.
	198	 Bienek and Kreibich 1970, p. 417.
	199	 On the growth of the hotel and spa business in Bad Wörishofen, see Burghardt et al.

1967, pp. 141–144.
	200	 Bienek and Kreibich 1970, p. 417.
	201	 Bienek and Kreibich 1970, p. 417.
	202	 Bienek and Kreibich 1970, p. 417. Card punches were standard equipment for small

and medium-sized companies. Aikele 1962; Haake 1965; Stubenrecht 1960; Zentralin-
stitut für Information und Dokumentation 1967. The manual for the IBM Card Punch 29
machine dated June 1970 marked its seventh edition. IBM 1970.

	203	 Bienek and Kreibich 1970, p. 418.
	204	 Bienek and Kreibich 1970, p. 421.
	205	 Everything known about Ubisco is based on an insider report published 35 years after

the end of the project in Neukom 2009. Hans Neukom was given access to files in the
archives of today’s UBS for this purpose, but he was not permitted to quote document
titles, names, or figures from them.

	206	 CDC 1968.
	207	 For example, the Schweizerische Kreditanstalt had just purchased the latest IBM Sys-

tem/370 machines and launched an information management system, reaffirming the
bank’s determination to move its transactions fully into digital space. The future SBG
system could not be allowed to lag behind the competition. Gugerli 2010.

	208	 CDC, Control Data 3200 Computer System/Real Time Applications 1963. http://ar�-
chive.computerhistory.org/resources/text/CDC/CDC.3200.1963.102646086.pdf (ac-
cessed 25 August 21). An example of CDC’s early use of the buzzword real time.

	209	 Neukom 2009, p. 32.
	210	 CDC developed TOOS along the lines of the Zodiac operating system created for the

US Air Force Worldwide Military Command and Control System. See Laccabue 2009
and CDC 1968. TOOS linked two powerful CDC 6000 computers via a large central
memory and could process large volumes of data.

	211	 In any case, both systems were further developed into successful CDC products in the
late 1970s. Neukom 2009, p. 33.

	212	 Ubisco brochure, SBG, Zurich 1973, cited in Neukom 2009, p. 37.

http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/P111.HTM
http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/P111.HTM
http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/P111.HTM
http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/P111.HTM
http://archive.computerhistory.org/resources/text/CDC/CDC.3200.1963.102646086.pdf
http://archive.computerhistory.org/resources/text/CDC/CDC.3200.1963.102646086.pdf

183

	213	 Roughly at the same time, a Swiss PTT project was struggling to transfer the entire
telephone network to a computerized switching center model that had been suc-
cessfully tested in 1972. The “integrated telecommunications system” project ended
abruptly and unsuccessfully in 1983, having also fallen victim to scaling up. Gugerli
2002a.

	214	 Brooks 1995, pp. 274–275; Abdel-Hamid and Madnick 1991. On the reasons why soft-
ware projects fail, see also Charette 2005.

	215	 Neukom 2009, p. 34.
	216	 Gugerli 2010.
	217	 Rogge 1997, pp. 268–271.
	218	 The following discussion draws on my own work in Gugerli 2007b and Gugerli 2009b,

and especially on the research of Hannes Mangold 2017. See also Bergien 2017.
	219	 Bundesinnenminister 1970, p. 20, cited in Mangold 2017, p. 85.
	220	 Herold 1968a; Herold 1968b; Herold 1968c; Herold 1970.
	221	 For example, in Der Spiegel: 1971, p. 53.
	222	 Mangold 2017, p. 145.
	223	 Der Spiegel no. 44, 23 October 1972, pp. 65–68.
	224	 Anonymous 1975. Gugerli 2007b, p. 176.
	225	 Der Spiegel no. 11, 13 March 1978, pp. 22–27.
	226	 Enzensberger 1979.
	227	 Denninger 1990.
	228	 Herold 1985; Simon and Taeger 1981; Wanner 1985.
	229	 Bölsch 1979.
	230	 Siebrecht 1995.
	231	 On the increasing density of the computer’s “internal traffic,” see Batcher 1968; on the

design possibilities for intensified “network traffic,” see Kaplan 1968.
	232	 On the “disconnection of connection,” see Sprenger 2015.
	233	 ACM 1971.
	234	 On this topic see also ARPA 1970, Roberts and Wessler 1970, and Kahn 1972.
	235	 Auwaerter 1970, p. 34.
	236	 Auwaerter 1970, p. 35.
	237	 Auwaerter 1970, p. 42.
	238	 Redmond and Smith 2000; Edwards 1996.
	239	 Auwaerter 1970, p. 42.
	240	 On the other hand, there was no shortage of “visions” that could be updated at will. J.

C. R. Licklider’s 1960 article on human–computer symbiosis served for decades, usual-
ly without explicit reference, as a source of legitimation and argumentation. Licklider
1960.

	241	 The expectations for information technology had already been articulated.
	242	 Sachman 1968, p. 93.
	243	 ACM 1971. The previous year, the association had published a record-breaking number

of articles dealing with the future. ACM articles with the word future in the title or
abstract had reached an interim peak in 1968: 1965, 12; 1966, 16; 1967, 17; 1968, 30;
1969, 22; 1970, 13.

	244	 At the time, they would likely not have caused much of a stir as the publication was
obscure. Science and Technology for the Technical Men in Management appeared only
in 1968 and 1969 and was a failed attempt to resuscitate International Science and

184

Technology, which had been discontinued in 1967. The essay by Licklider, Taylor, and
Herbert was republished by Taylor as a digital reprint in 1990, a good two decades lat-
er (Licklider and Taylor 1990), and quickly became a hallowed artifact of media history.
See Waldrop and Licklider 2002; Mayer 2003b; Norman 2005.

	245	 National Research Council 1999, p. 98; Hauben 2001.
	246	 Some of Licklider’s essays are hard to distinguish by title. See Man–Computer Sym-

biosis (1960), On-line Man–Computer Communication (1962), Man–Computer Com-
munication (1968), The Computer as a Communication Device (1968). Licklider 1960;
Licklider 1968; Licklider and Clark 1962; Licklider et al. 1968. See also the 1967 publi-
cations listed in Licklider 1968: Dynamic Modeling (1967), Interactive Dynamic Mod-
eling (1967), and Interactive Information Processing (1967). Licklider 1967a; Licklider
1967b; Licklider 1967c.

	247	 Abbate 1999, pp. 123–127 and pp. 133–140.
	248	 Licklider et al. 1968, p. 23.
	249	 Licklider et al. 1968, p. 22. See also Dennis 1968, p. 372. On Licklider’s familiarity with

Wolfgang Köhler’s Gestalt psychology, see the reference in Pratschke 2011, p. 280.
	250	 Cowlishaw 1990, p. 8. This aesthetic and mechanical concept of operational reliability

was violated when systems were cobbled or plugged together ad hoc. At IBM, this
practice was called “cabling together” as a play on “cobbling together.” Cowlishaw
1990, p. 12.

	251	 Fano 1967, p. 35. From the perspective of the operator of a data center with time-shar-
ing needs, the use of existing telephone lines in particular involved a bit of educational
effort vis-à-vis the telephone companies: Steadman and Sugar 1968, p. 23.

	252	 A major exception is the research into military technology conducted by Rand under
the direction of Paul Baran. Baran and Boem not only investigated the possibility of
packet switching but also simulated different network topologies in the computer. See
Baran and Boem 1964.

	253	 Fontanellaz 1964; Neu and Kündig 1968. See also Gugerli 2002b.
	254	 Bächi 2002.
	255	 Georgii 1966; Campbell-Kelly 1988. At least they recognized the challenge. “Nearly all

PTT administrations are dealing with the problem of data transmission through their
networks,” reported the Technische Mitteilungen der Schweizerischen PTT as early as
1964. Fontanellaz 1964, p. 429.

	256	 Davies and Barber 1973; Fraser 1972; Gold and Selwyn 1968.
	257	 The following discussion draws on Campbell-Kelly and Garcia-Swartz 2005 and Ab-

bate 1999.
	258	 Campbell-Kelly and Garcia-Swartz 2005, p. 31.
	259	 Campbell-Kelly and Garcia-Swartz 2005, p. 14, cite companies such as Automatic Data

Processing Inc., CSC, EDS, Key data, and University Computing.
	260	 Campbell-Kelly and Garcia-Swartz 2005, p. 18.
	261	 Cretien et al. 1973.
	262	 SWIFT used a packet switching system developed by Bold Beranek and Newman

(BBN). On the development of SWIFT, see Scott et al. 2008.
	263	 Mendicino 1972, p. 95.
	264	 In terms of administration and information, the protocol is the sheet pasted to the

papyrus scroll indicating the purpose or subject of the text (from protocollum).
	265	 According to Cowlishaw 1990, p. 43.

185

	266	 Bhushan and Stotz 1968, p. 95. The analogy between diplomatic and computer proto-
cols has certainly been made for teaching purposes. See, for example, Miller 1981.

	267	 “Getting equipment from multiple vendors to communicate is the stuff bad dreams are
made of, but TCP/IP provides one possible solution,” wrote David Forsberg in an article
in Network World dated 27 August 1990. The article was headlined “The Interconnec-
tivity Nightmare.” Forsberg 1990, p. 42.

	268	 Campbell-Kelly and Garcia-Swartz 2005, p. 22.
	269	 International Telegraph and Telephone Consultative Committee 1977. Campbell-Kelly

and Garcia-Swartz 2005, p. 23.
	270	 Campbell-Kelly and Garcia-Swartz 2005, pp. 26–28. Abbate 1999, p. 168.
	271	 Abbate 1999, pp. 171–172. As late as 1990, Tillman and Yen were confident that the

OSI model would force IBM to adapt their proprietary Systems Network Architecture
(SNA) to OSI. Tillman and Yen 1990, p. 214. TCP/IP interested them only marginally
and in terms of how to get “from there to here,” that is, from the TCP/IP world to the
SNA world. This had already been explained by Lew and Jong 1988.

	272	 CCITT 1984; Deasington 1985.
	273	 The second edition of Andrew S. Tanenbaum’s textbook on computer networks (1989)

was still based completely on the OSI model. The third edition therefore had to be
completely revised, to wit, OSI had come too late; it had been poorly conceived and
too strongly oriented to the IBM model. Tanenbaum 1997, pp. 55–60; see also Kerner
and Bruckner 1989.

	274	 Roberts and Wessler 1970; Cerf and Kahn 1974; Metcalfe and Boggs 1976; Roberts
1978.

	275	 Cerf and Cain 1983.
	276	 Abbate 1999, p. 123, refers to the close collaboration between ARPA projects, the

British National Physics Laboratory’s network projects, and French research on the
Cyclades network.

	277	 Cerf and Cain 1983, p. 311.
	278	 Abbate 1999, p. 130.
	279	 The best example is the virtual conferences used to develop numerous protocols in

the Internet protocol family. The request for comments (RFC) was a highly condensed
and rapid form of collaboration that served to bind the members of a project group
together. King et al. 1997, pp. 8–13.

	280	 MITS 1975, p. 25.
	281	 In the 1920s, radio tinkering had been declared a respectable occupation because it

kept more young people at home. See Boddy 2004, pp. 27–28.
	282	 Roberts and Yates 1975a; Roberts and Yates 1975b.
	283	 The story and the accompanying code were first published in May 1975 in Menlo Park-

based People’s Computer Company magazine, Vol. 3, pp. 8–9, and reprinted without
illustrations in Dompier 1976 (1975).

	284	 For more, though undocumented, detail, see Levi 2010, Chapter 10.
	285	 Meanwhile, at the University of Pennsylvania, an office automation project by the

group of David Ness also produced a DAISY (Decision Aiding Information System).
Morgan 1976, p. 607.

	286	 Raskin 1976.
	287	 Dompier 1976 (1975) provides the code for The Fool on the Hill and transistor radio,

first published in May 1975.

186

	288	 In order to critique Friedrich Kittler’s sweeping assertion that consumer electronics
had its origins in the “misuse of army equipment,” Claus Pias had to generalize the
idea of misappropriation. Pias 2015, pp. 39–41. One could also argue that the youthful
hobbyists were not cultivating misappropriation but rather celebrating generalization.

	289	 See Hey and Pápay 2015, pp. 143–147, for the respective roles played by Paul Allan,
Monte Davidoff, Bill Gates, John Kemeny, Thomas Kurtz, Ed Roberts, Steve Russell,
Dartmouth College, Digital Equipment Corporation, Honeywell, Harvard University, the
University of Washington, C-Cubed, Traf-O-Data, and various PDP-10 computers in the
development of the Altair BASIC interpreter alone.

	290	 Green 1975.
	291	 Gray 1976, pp. 238–239.
	292	 Gray 1976, p. 239.
	293	 Warren 1977, p. 493.
	294	 Warren 1977, p. 495.
	295	 Warren 1977, pp. 496–497.
	296	 Kay et al. 1978, p. 29.
	297	 Isaacson et al. 1978, p. 46.
	298	 The Oregon Report on Computing came out of a conference held in Portland, Oregon,

on 20–22 March 1978. Isaacson et al. 1978.
	299	 Isaacson 1978.
	300	 Isaacson et al. 1978, p. 50.
	301	 Landau 1979.
	302	 Morgan 1976, p. 605.
	303	 Weiderman 1979.
	304	 Isaacson et al. 1978, p. 46.
	305	 “What is a personal computer?” Holden 1979, p. 3.
	306	 Peter J. Schuten, “Home Computer: Demand Lags,” New York Times, 7 June 1979,

p. D2.
	307	 “Big IBM’s Little Computer,” New York Times, 13 August 1981.
	308	 Product fact sheet (1981). www-03.ibm.com/ibm/history/exhibits/pc25/pc25_fact.

html (accessed 5 June 2017).
	309	 Goldstein and Goldstein 1982; Henk 1983; Trost and Dederichs 1983. A precursor to

IBM’s personal computer was the 1975 IBM 5100 Portable Computer. Weighing 50
pounds, it was of limited “portability.” www-03.ibm.com/ibm/history/exhibits/pc/
pc_2.html (accessed June 5, 2017). See also Katzan 1977. The 1979 IBM 5520, aimed
at professional word processing, weighed even more, but could drive 12 printers and
operate 18 screens. It was compatible with the IBM 6670 Information Distributor. See
www-03.ibm.com/ibm/history/exhibits/pc/pc_5.html (accessed 5 June 2017).

	310	 Gotwals 1983, in response to Brannstrom 1982.
	311	 In line with Daniel T. Rodgers’ assessment of the Reagan era as an “Age of Fracture”

that, like Thatcherism, made individual choice and individual configuration (of the
wealthy) into a political platform. Rodgers 2011.

	312	 For Ridley Scott’s “Big Brother” commercial, see Scott 1991. The following description
of the Macintosh ad, with slight adaptations, is drawn from Gugerli and Mangold
2016, pp. 157–158.

	313	 www.computerhistory.org/revolution/personal-computers/17/303/1201 (accessed 25
August 21).

https://www.ibm.com/ibm/history/exhibits/pc25/pc25_fact.html
https://www.ibm.com/ibm/history/exhibits/pc25/pc25_fact.html
https://www.ibm.com/ibm/history/exhibits/pc/pc_2.html
https://www.ibm.com/ibm/history/exhibits/pc/pc_2.html
https://www.ibm.com/ibm/history/exhibits/pc/pc_5.html

187

	314	 www.computerhistory.org/revolution/personal-computers/17/303/1201 (accessed 25
August 21).

	315	 See www.youtube.com/watch?v=j2fURxbdIZs – Remington-Rand Presents the UNI-
VAC (accessed 5 June 2017). See also Eckert et al. 1951.

	316	 For a history of the card index, see Krajewski 2002; on card indexing in policing, see
Kaleth 1961; in the retail trade, Dalheimer 1962. The path of the card index from the
humanities to IBM and back is traced by Jones 2016.

	317	 Eckert et al. 1951, p. 11.
	318	 Babbage 1982 (1837).
	319	 Eckert et al. 1951, p. 12.
	320	 Temporary storage was moved into the computer – with constant compression and ca-

pacity expansion – and made respectable, sometimes even dubbed disk memory. Soon
it was used to store much more than just interim results. As early as the mid-1950s,
the huge mercury tube-driven delay line memories disappeared. Easily addressable
magnetic core memories or drum memories now formed the main memory, while hard
disk memories recorded things that had been temporarily stored on magnetic tape at
UNIVAC. On the development of magnetic recording storage until the mid-1970s, see
Hoagland 1976. Hoagland emphasizes (in a footnote) that there is no obvious differ-
ence in meaning between memory and storage, except for proximity to the processor.
Hoagland 1976, p. 1283.

	321	 See Brown and Ridenour 1953; Ridenour 1955. A very conventional but well-informed
history of memory can be found in Gerecke and Poschke 2010. It was not until 2005
that it occurred to people to formulate a type of Moore’s law for storage media as well.
What emerged was called Kryder’s law. It had apparently held for decades but proved
invalid almost as soon as it was formulated. Rosenthal et al. 2012.

	322	 Bachman and Williams 1965, p. 413; Haigh 2007.
	323	 Backman and Williams 1964, p. 411.
	324	 On the history of the pallet, see Dommann 2009.
	325	 Bachman and Williams 1964, p. 415.
	326	 Codd 1970. The account of this second fundamental shift in the history of computer

database systems recycles and condenses a section from Gugerli 2007a.
	327	 Codd 1970, p. 377.
	328	 Codd 1970, p. 377.
	329	 Everest 1974.
	330	 Bachman 1973.
	331	 Codd and Date 1975.
	332	 Date and Codd 1975, p. 95.
	333	 Codd 1970; Codd 1971a; Codd 1971b; Astrahan and Chamberlin 1975, p. 580.
	334	 Astrahan and Chamberlin 1975, p. 580.
	335	 Everest 1974; Codd and Date 1975; Date and Codd 1975; Sibley 1975; Haigh 2006.
	336	 The account draws on Chamberlin et al. 1981.
	337	 Astrahan and Chamberlin 1975, pp. 580–588.
	338	 Chamberlin et al. 1981, p. 636.
	339	 Chamberlin et al. 1981, p. 636. On the IBM’s user orientation see Cowlishaw 1990b,

p. 57.
	340	 Chamberlin et al. 1981, p. 633.

188

	341	 On the IBM 3850, see Johnson 1975. On the design of the mass storage system, see
Penny et al. 1970.

	342	 Hoagland 1976 organized his concise overview for that year around magnetically re-
corded memory technologies. Söll and Kirchner 1978 survey a storage landscape on
the basis of access time and capacity. An overview of “floppy disk drives and diskettes,
hard disk drives, removable disks, optical storage, and tape drives” is given by Daniels
et al. 1987.

	343	 Walker 1987; Akscyn et al. 1987.
	344	 Nelson 1967.
	345	 Raskin 1987, p. 325.
	346	 Nelson 1987 [1967].
	347	 ACM 1987.
	348	 Conklin 1987, 33.
	349	 Conklin 1987, pp. 17 and 21.
	350	 Raskin 1987, p. 327.
	351	 Berners-Lee 1989/1990.
	352	 Berners-Lee 1989/1990, p. 5.
	353	 Berners-Lee 1989/1990, p. 11.
	354	 On the development of CERN from a history of technology perspective see Krige 1996.
	355	 Noll and Scacchi 1991.
	356	 Berners-Lee et al. 1996.
	357	 Berners-Lee 1989/1990, p. 4.
	358	 On software-supported program trading, see Katzenbach 1987; on the related stock

market crash, see Carlson 2006.
	359	 See Kephart and Chess 2003, p. 41.

189

Bibliography

Abbate, Janet 1999: Inventing the Internet, Cambridge MA.
Abdel-Hamid, Tarek K. and Stuart E. Madnick 1991: Software Project Dynamics: An Integrat-

ed Approach, Prentice-Hall Software Series, Englewood Cliffs NJ.
ACM (Ed.) 1971: Computers and Crisis: How Computers Are Shaping our Future, New York

NY.
ACM 1987: Proceedings of the ACM Conference on Hypertext, Chapel Hill NC.
Adams, W. I. and P. R. Federico 1964: Cadfiss Test System: Computation and Data Flow In-

tegrated Subsystem Tests, Proceedings of the 1964 19th ACM National Conference,
pp. 12301–12307.

Aikele, Erwin 1962: Betriebsabrechnung mit IBM-Lochkarten, Darmstadt.
Aiken, Howard 1975 (1937): Proposed Automatic Calculating Machine, in: Randell, Brian

(Ed.): The Origins of Digital Computers: Selected Papers, Berlin, Heidelberg, New York
NY, pp. 195–201.

Akscyn, Robert et al. 1987: KMS: A Distributed Hypermedia System for Managing Knowl-
edge in Organizations, Proceedings of the ACM Conference on Hypertext, Chapel Hill
NC, pp. 1–20.

Amsler, Jakob 1856: Über die mechanische Bestimmung des Flächeninhaltes, der statischen
Momente und der Trägheitsmomente ebener Figuren, insbesondere über einen neuen
Planimeter, Schaffhausen.

Amsler, Robert and Theodor H. Erismann 1993: Jakob Amsler-Laffon (1823–1912), Alfred
Amsler (1857–1940). Pioniere der Prüfung und Präzision, in: Schweizer Pioniere der
Wirtschaft und Technik, 58, Meilen.

Anonymous 1964: A Panel Discussion on Time-Sharing, in: Datamation, 10 (11), pp. 38–44.
Anonymous 1968: Thousands Wept: The End of OS, in: Datamation, 14 (4), p. 72.
Anonymous 1971: Kommissar Computer, in: Der Spiegel 27, p. 53.
Anonymous 1975: Das Informationssystem PIOS, in: Inpolnachrichten (12), pp. 1–3.
ARPA 1970: Resource Sharing Computer Networks (Collection of Papers Presented at Spring

Joint Computer Conference, Atlantic City NJ, May 1970), Washington DC.
Aspray, William 1994: The History of Computing within the History of Information Technolo-

gy, in: History and Technology, 11, pp. 7–19.
Astrahan, Morton M. and Donald D. Chamberlin 1975: Implementation of a Structured Eng-

lish Query Language, in: Communications of the ACM, 18 (10), pp. 580–588.
Austrian, Geoffrey D. 1982: Herman Hollerith: Forgotten Giant of Information Processing,

New York NY.
Auwaerter, John 1970: Challenges of the Seventies, Proceedings of the 1970 25th Annual

Conference on Computers and Crisis: How Computers Are Shaping Our Future, New
York NY, pp. 34–43.

Babbage, Charles 1982 (1837): On the Mathematical Powers of the Calculating Engine, in:
Randell, Brian (Ed.): The Origins of Digital Computers: Texts and Monographs in Com-
puter Science, Berlin, Heidelberg, pp. 19–54.

Bächi, Beat 2002: Kommunikationstechnologischer und sozialer Wandel: “Der schweize
rische Weg zur digitalen Kommunikation” (1960–1985), Zurich.

190

Bachman, Charles W. and S. B. Williams 1964: A General Purpose Programming System for
Random Access Memories, Minneapolis MN.

Bachman, Charles W. 1973: The Programmer as Navigator, in: Communications of the ACM,
16 (11), pp. 653–658.

Baran, Paul and Sharla P. Boehm 1964: On Distributed Communications II. Digital Simulation
of Hot-Potato Routing in a Broadband Distributed Communications Network, www.
rand.org/pubs/research_memoranda/RM3103.html, Santa Monica CA.

Bashe, Charles J. 1999: Constructing the IBM ASCC (Harvard Mark I), in: Cohen, I. Bernard
et al. (Eds.): Maikin’ Numbers: Howard Aiken and the Computer, Cambridge MA, Lon-
don, pp. 65–75.

Batcher, K. E. 1968: Sorting Networks and Their Applications, Proceedings of the April 30–
May 2, 1968, Spring Joint Computer Conference, Atlantic City NJ, pp. 307–314.

Bauer, W. F. 1958: Computer Design from the Programmer’s Viewpoint, Proceedings Eastern
Joint Computer Conference, Philadelphia PA, December 3–5, 1958, pp. 46–51.

Bell, Daniel 1967: Notes on the Post-Industrial Society I & II, in: The Public Interest, 6 and
7, pp. 24–35 and 102–118.

Bell, Daniel 1973: The Coming of Post-Industrial Society: A Venture in Social Forecasting,
New York NY.

Bemer, Robert W. 1957a: How to Consider a Computer, in: Automatic Control Magazine
(March), pp. 66–69.

Bemer, Robert W. 1957b: The Status of Automatic Programming for Scientific Computation,
Proc. 4th Annual Computer Applications Symposium, Armour Research Foundation Oc-
tober 24–25, 1957, pp. 107–126.

Bergien, Rüdiger 2017: “Big Data” als Vision. Computereinführung und Organisationswandel
in BKA und Staatssicherheit (1967–1989), in: Zeithistorische Forschungen/Studies in
Contemporary History, Online-Ausgabe, 14 (2), pp. 258–285.

Berners-Lee, Tim 1989/1990: Information Management: A Proposal, www.w3.org/Histo�-
ry/1989/proposal.html.

Berners-Lee, Tim et al. 1996: Hypertext Transfer Protocol – HTTP/1.0. Internet RFC 1945,
May 1996, www.ietf.org/rfc/rfc1945.txt.

Bhola, S. K. et al. 1968: Electronic Time-Division Multiplexing, in: Electronic Engineering, 40
(484), pp. 298–299.

Bhushan, Abhay K. and Robert H. Stotz 1968: Procedures and Standards for Inter-Computer
Communications, Proceedings of the April 30–May 2, 1968, Spring Joint Computer
Conference, Atlantic City NJ, pp. 95–104.

Bienek, Bernd and Volker Kreibich 1970: Planung und Aufbau eines Informationssystems im
Kneippheilbad Wörishofen, in: IBM Nachrichten, 203, pp. 416–421.

Boddy, William 2004: New Media and Popular Imagination: Launching Radio, Television and
Digital Media in the United States, Oxford.

Bölsche, Jochen 1979: Der Weg in den Überwachungsstaat. Mit neuen Dokumenten und
Stellungnahmen von Gerhart Baum, Reinbeck b. Hamburg.

Boulden, James B. and Elwood S. Buffa 1970: Corporate Models: On-Line, Real-Time Sys-
tems, in: Harvard Business Review, 48 (4), pp. 65–83.

Boulding, Kenneth 1966: The Economics of the Coming Spaceship Earth, in: Jarrett, Henry
(Ed.), Environmental Quality in a Growing Economy, Baltimore MD, pp. 3–14.

Brandon, Dick H. 1968: The Problem in Perspective, Proceedings of the 1968 23rd ACM
National Conference, pp. 332–334.

https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html

191

Brannstrom, Arlin J. 1982: First Impressions of the IBM Personal Computer, in: NCCI Staff
Paper Series, 4.

Brooks, Frederick P. 1995: The Mythical Man-Month: Essays on Software Engineering, Read-
ing MA.

Brown, George W. and Louis N. Ridenour 1953: The Processing of Information-Containing
Documents, Proceedings of the February 4–6, 1953, Western Computer Conference,
Los Angeles CA, pp. 80–85.

Bruderer, Herbert 2010: Konrad Zuse und die ETH Zürich. Zum 100. Geburtstag des Informa-
tikpioniers Konrad Zuse (22. Juni 2010), Technischer Bericht/Departement Informatik.
Professur für Informationstechnologie und Ausbildung, Zurich.

Bruderer, Herbert 2015 (2020): Milestones in Analog and Digital Computer, 3rd edn., trans.
John McMinn, 2 vols., Cham.

Bundesinnenminister (Ed.) 1970: Sofortprogramm zur Modernisierung und Intensivierung der
Verbrechensbekämpfung, Bonn.

Burghardt, Ludwig et al. 1967: Wörishofen. Beiträge zur Geschichte des Ortes. Zusammeng-
estellt aus Anlass der 900. Wiederkehr seiner ersten urkundlichen Erwähnung im
Jahre 1067, Bad Wörishofen.

Cale, E. G. et al. 1979: Price/Performance Patterns of U.S. Computer Systems, in: Communi-
cations of the ACM, 22 (4), pp. 225–233.

Campbell-Kelly, Martin 1988: Data Communications at the National Physical Laboratory
1965–1975, in: Annals of the History of Computing, 9, pp. 221–247.

Campbell-Kelly, Martin 1998: Data Processing and Technological Change: The Post Office
Savings Bank 1861–1930, in: Technology and Culture, 39 (1), pp. 1–32.

Campbell-Kelly, Martin 2003: From Airline Reservations to Sonic the Hedgehog: A History of
the Software Industry, Cambridge MA.

Campbell-Kelly, Martin et al. 2014: Computer: A History of the Information Machine, New
York NY.

Campbell-Kelly, Martin and Daniel D. Garcia-Swartz 2005: The History of the Internet: The
Missing Narratives (Draft, SSRN), https://ssrn.com/abstract=867087.

Carlson, Mark 2006: A Brief History of the 1986 Stock Market Crash with a Discussion of
the Federal Reserve Response, Finance and Economics Discussion Series. Divisions of
Research & Statistics and Monetary Affairs, Washington DC, pp. 1–24.

Carr, John W. III 1952: Progress of the Whirlwind Computer towards an Automatic Program-
ming Procedure, Proceedings of the 1952 ACM National Meeting (Pittsburgh), New
York NY, pp. 237–241.

CCITT 1984: The X.25 Protocol and Seven Other Key CCITT Recommendations, X.1, X.2, X.3,
X.21, X.21 bis, X.28, and X.29, Belmont CA.

CDC, Control Data Corporation 1976: CDC Operating System History, https://archive.org/
details/bitsavers_cdccyberCDtoryMar76_319856.

CDC, Control Data Corporation 1968: Control Data 6400/6600 Computing Systems’ Configu-
rator, www.computerhistory.org/collections/catalog/102646143.

Cerf, V. G. and E. Cain 1983: The DoD Internet Architecture Model, in: Computer Networks,
7, pp. 307–318.

Cerf, V. G. and R. E. Kahn 1974: A Protocol for Packet Network Interconnection, in: IEEE
Transactions on Communication Technology, COM-22 (5), pp. 627–641.

Certaine, J. 1958: On Sequences of Pseudo-Random Numbers of Maximal Length, in: Jour-
nal of the ACM, 5 (4), pp. 353–356.

192

Ceruzzi, Paul E. 2005: Moore’s Law and Technological Determinism: Reflections on the His-
tory of Technology, in: Technology and Culture, 46 (3), pp. 584–593.

Chamberlin, Donald D. et al. 1981: A History and Evaluation of System R, in: Communica-
tions of the ACM, 24 (10), pp. 632–646.

Charette, Robert N. 2005: Why Software Fails, in: IEEE Spectrum, 42 (9), pp. 42–49.
Chretien, G. J. et al. 1973: The SITA Network, NATO Advanced Study Institute on Computer

Communication Networks, Sussex.
Codd, Edgar F. 1970: A Relational Model of Data for Large Shared Data Banks, in: Communi-

cations of the ACM, 13 (6), pp. 377–387.
Codd, Edgar F. 1971a: Relational Completeness of Data Base Sublanguages, in: Courant

Computer Science Symposia (Ed.): Data Base Systems, Engelwood Cliffs NJ, pp. 65–
98.

Codd, Edgar F. 1971b: A Data Base Sublanguage Founded on the Relational Calculus, 1971
ACM SIGFIDET Workshop, San Diego CA, pp. 35–68.

Codd, Edgar F. and Christopher J. Date 1975: Interactive Support for Non-Programmers: The
Relational and Network Approaches, Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) Workshop on Data Description, Access and Control: Data Models: Da-
ta-Structure-Set versus Relational, Ann Arbor, Michigan, May 1–3, pp. 11–41.

Cohen, Bernard I. and William Aspray 2000: Howard Aiken and the Dawn of the Computer
Age, in: Rojas, Raul and Ulf Hashagen (Eds.), The First Computers: History and Archi-
tectures, Cambridge MA, pp. 107–120.

Conklin, Jeff 1987: Hypertext: An Introduction and Survey, in: IEEE Computer (September),
pp. 17–41.

Corbató, Fernando José 1964: Panel Discussion on Time Sharing, in: Communications of the
ACM, 7 (7), p. 399.

Corbató, Fernando José et al. 1962: An Experimental Time-Sharing System, New York NY,
pp. 335–344.

Corbató, Fernando José et al. 1972: Multics: The First Seven Years, in: Spring Joint Comput-
er Conference, pp. 571–583.

Corbató, Fernando José and Victor A. Vyssotsky 1965: Introduction and Overview of the Mul-
tics System, Proceedings Fall Joint Computer Conference, pp. 185–196.

Coveyou, R. R. 1960: Serial Correlation in the Generation of Pseudo-Random Numbers, in:
ACM, 7 (1), pp. 72–74.

Cowlishaw, Mike 1990: IBM Jargon and General Computing Dictionary. Tenth Edition, Win-
chester.

Crank, John 1947: The Differential Analyser. With Diagrams and Photographs, London.
Dalheimer, Karlheinz 1962: Fakturierung von Frischdienstlieferungen im Lebensmittel-

großhandel mit einer Lochkarten-Ziehkartei, in: IBM Nachrichten, 158, pp. 1867–1871.
Daniels, Siegfried et al. 1987: Massenspeicher-Handbuch für Mikrocomputer alles über

Floppy-Disk-Laufwerke u. Disketten, Festplatten-Laufwerke, opt. Speicher u. Band-
laufwerke, Troisdorf.

Date, Christopher J. and Edgar. F. Codd 1975: The Relational and Network Approaches: Com-
parison of the Application Programming Interfaces, Proceedings of the 1974 ACM SIG-
FIDET (now SIGMOD) Workshop on Data Description, Access and Control: Data Mod-
els: Data-Structure-Set versus Relational, Ann Arbor, Michigan, May 1–3, pp. 83–113.

Davies, Donald Watts and Derek L. A. Barber 1973: Communication Networks for Comput-
ers, London.

193

Dearden, John 1964: Can Management Information Be Automated?, in: Harvard Business
Review, 42 (2), pp. 128–135.

Dearden, John 1965: How to Organize Information Systems, in: Harvard Business Review,
43 (2), pp. 65–73.

Dearden, John 1972: MIS Is a Mirage, in: Harvard Business Review (January–February),
pp. 90–99.

Deasington, Richard J. 1985: X.25 Explained: Protocols for Packet Switching Networks, Ellis
Horwood Series in Computer Communications and Networking, Chichester.

Denning, Peter J. 1971: Third Generation Computer Systems, in: ACM Computing Surveys,
3 (4).

Denninger, Erhard 1990: Der gebändigte Leviathan, Baden-Baden.
Dennis, Jack B. 1968: A Position Paper on Computing and Communications, in: Communica-

tions of the ACM, 11 (5), pp. 370–377.
Dijkstra, Edsger W. 1968: Letters to the Editor: Go to Statement Considered Harmful, in:

Communications of the ACM, 11 (3), pp. 147–148.
Dijkstra, Edsger W. 1970: Notes on Structured Programming, Eindhoven.
Dijkstra, Edsger W. 1972: The Humble Programmer: 1972 ACM Turing Award Lecture, in:

Communications of the ACM, 15 (10), pp. 859–866.
Dommann, Monika 2009: “Be Wise – Palletize.” Die Transformationen eines Transportbretts

zwischen den USA und Europa im Zeitalter der Logistik, in: Traverse, 16 (3), pp. 21–35.
Dompier, Steve 1976 (1975): Music of a Sort (reprint), in: Dr. Dobb’s Journal of Computer

Calisthenics & Orthodontia, 1 (February 1976), p. 28.
Donegan, James J. et al. 1964: Experiences with the Goddard Computing System during

Manned Spaceflight Missions, Proceedings of the 1964 19th ACM National Confer-
ence, pp. 12101–12108.

Dover, Jerome J. 1954: A Centralized Data Processing System, Proceedings of the February
11–12, 1954, Western Computer Conference. Trends in Computers – Automatic Con-
trol and Data Processing, Los Angeles CA, pp. 172–183.

Eckert, J. Presper et al. 1945: Description of the ENIAC and Comments on Electronic Digital
Computing Machines, Moore School of Electrical Engineering, University of Pennsyl-
vania.

Eckert, J. Presper et al. 1951: The UNIVAC System, AIEE-IRE ’51 Papers and Discussions
Presented at the Dec. 10–12, 1951, Joint AIEE-IRE Computer Conference. Review of
Electronic Digital Computers, New York NY, pp. 6–16.

Edwards, Paul N. 1996: The Closed World: Computers and the Politics of Discourse in Cold
War America, Cambridge MA, London.

Edwards, Paul N. 2000: The World in a Machine: Origins and Impacts of Early Computerized
Global Systems Models, in: Hughes, Agatha C. and Thomas Parke Hughes (Eds.): Sys-
tems, Experts, and Computers: The Systems Approach in Management and Engineer-
ing, World War II and after, Cambridge MA, pp. 221–254.

Egger, Josef 2013: “Ein Wunderwerk der Technik.” Frühe Computernutzung in der Schweiz
(1960–1980), Zurich.

Eldredge, K. R. et al. 1957: Automatic Input for Business Data-Processing Systems, Papers
and Discussions Presented at the December 10–12, 1956, Eastern Joint Computer
Conference. New Developments in Computers, New York NY, pp. 69–73.

Enzensberger, Hans Magnus 1979: Der Sonnenstaat des Doktor Herold, in: Der Spiegel, 25,
pp. 68–78.

194

ETH-Bibliothek 1968: Automatisierung der ETH-Bibliothek. Planungsunterlagen Oktober
1968, Zurich.

Everest, G. C. 1974: The Futures of Database Management, Proceedings of the 1974 ACM
SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control, Ann Ar-
bor, Michigan, May 1–3, pp. 445–462.

Fano, Robert M. 1967: The Computer Utility and the Community, in: IEEE International Con-
vention Record Part 12, pp. 30–34.

Fano, Robert M. and Fernando José Corbató 1966: Time-Sharing on Computers, in: Scientific
American, 215 (3), pp. 129–131.

Fontanellaz, Gustav 1964: Datenübertragung auf dem öffentlichen Fernmeldenetz, in: Tech-
nische Mitteilungen PTT 11, pp. 429–434.

Forsberg, David 1990: The Interconnectivity Nightmare, in: Network World (August 27,
1990), pp. 42, 46, 60, 61.

Fraser, A. G. 1972: On the Interface between Computers and Data Communications Systems,
in: Communications of the ACM, 15 (7), pp. 566–573.

Frei, Norbert 2008: 1968. Jugendrevolte und globaler Protest, Munich.
Fuller, R. Buckminster 1969: Operating Manual for Spaceship Earth, New York NY.
Furger, Franco and Bettina Heintz 1997: Technologische Paradigmen und lokaler Kontext.

Das Beispiel der ERMETH, in: Schweizerische Zeitschrift für Soziologie, 23 (3),
pp. 533–566.

Füssl, Wilhelm (Ed.) 2010: 100 Jahre Konrad Zuse. Einblicke in den Nachlass, Munich.
Gandy, Anthony 2014: Product Strategy Choices. Honeywell and RCA Mainframe Computer

Product Strategies 1963–71, in: Business History, 56 (3), pp. 414–433.
Gass, Saul I. 1961: The Role of Digital Computers in Project Mercury, Proceedings of the

December 12–14, 1961, Eastern Joint Computer Conference. Computers – Key to Total
Systems Control, Washington DC, pp. 33–46.

Gates, C. R. and W. H. Pickering 1965: The Role of Computers in Space Exploration, Proceed-
ings of the November 30–December 1, 1965, Fall Joint Computer Conference, Part II.
Computers – Their Impact on Society, Las Vegas NV, pp. 33–35.

Georgii, Eugen 1966: Neuzeitliche Vermittlungstechnik, in: Technische Mitteilungen PTT,
1966 (7), pp. 197–209.

Gerecke, Kurt and Klemens Poschke 2010: IBM System Storage-Kompendium. Die IBM
Speichergeschichte von 1952 bis 2010, Ehningen.

Girschik, Katja 2010: Als die Kassen lesen lernten. Eine Technik- und Unternehmens-
geschichte des Schweizer Einzelhandels 1950 bis 1975, Bd. 22, Munich.

Glimm, James et al. 1990: The Legacy of John von Neumann, Proceedings of Symposia in
Pure Mathematics, Providence RI.

Gold, Michael M. and Lee L. Selwyn 1968: Real Time Computer Communications and the
Public Interest, Proceedings of the December 9–11, 1968, Fall Joint Computer Confer-
ence, Part II, San Francisco CA, pp. 1473–1478.

Goldstein, Larry Joel and Martin Goldstein 1982: IBM Personal Computer: An Introduction to
Programming and Applications, Bowie MD.

Goldstine, H. H. and Adele Goldstine 1996 (1946): Electronic Numerical Integrator and Com-
puter (ENIAC), in: IEEE Annals of the History of Computing, 18 (15), pp. 10–16.

Gorn, S. 1966: Recorded Magnetic Tape for Information Interchange (800 CPI, NRZI), in:
Communications of the ACM, 9 (4), pp. 285–292.

Gosling, Francis G. 1994: The Manhattan Project: Making the Atomic Bomb, Washington DC.

195

Gotwals, John K. 1983: Processing Power on the IBM Personal Computer, Proceedings of
the 1983 ACM SIGSMALL Symposium on Personal and Small Computers, San Diego
CA, pp. 132–142.

Gray, George 2001: UNIVAC I: The First Mass-Produced Computer, in: Unisys History News-
letter, 5 (1).

Gray, Stephen B. 1976: Building Your Own Computer, Proceedings of the June 7–10, 1976,
National Computer Conference and Exposition, New York NY, pp. 235–239.

Green, Bert F. Jr. et al. 1959: Empirical Tests of an Additive Random Number Generator, in:
Journal of the ACM, 6 (4), pp. 527–537.

Green, Wayne 1975: From the publisher … Are they real?, in: BYTE, 1 (2), pp. 61, 81, 87.
Greenberger, Martin 1959: Random Number Generators, Preprints of Papers Presented at

the 14th National Meeting of the Association for Computing Machinery, Cambridge
MA, pp. 1–3.

Greenberger, Martin 1966: The Priority Problem and Computer Time Sharing, in: Manage-
ment Science, 12 (11), pp. 888–906.

Greenberger, Martin 1961: Notes on a New Pseudo-Random Number Generator, in: Journal
of the ACM, 8 (2), pp. 163–167.

Grosch, Herbert 1953: High Speed Arithmetic: The Digital Computer as a Research Tool, in:
Journal of the Optical Society of America 43 (April), pp. 306–310.

Gugerli, David 2002a: Die Entwicklung der digitalen Telefonie (1960–1985). Die Kosten
soziotechnischer Flexibilisierungen, in: Stadelmann, Kurt et al. (Eds.): Telemagie.
150 Jahre Telekommunikation in der Schweiz, Zurich, pp. 154–167.

Gugerli, David 2002b: Steiniger Weg ins digitale Zeitalter, in: Neue Zürcher Zeitung, January
5, p. 25.

Gugerli, David 2007a: Die Welt als Datenbank. Zur Relation von Softwareentwicklung,
Abfragetechnik und Deutungsautonomie, in: Nach Feierabend. Zürcher Jahrbuch für
Wissensgeschichte, 3, pp. 11–36.

Gugerli, David 2007b: Vom Befehl zur Steuerung, von der Datei zum Index. Horst Herold
im Gespräch mit David Gugerli, in: Nach Feierabend. Zürcher Jahrbuch für Wissens-
geschichte, 3, pp. 173–184.

Gugerli, David 2009a: Das Monster und die Schablone. Zur Logistik von Daten um 1950, in:
Traverse, 16 (3), pp. 66–76.

Gugerli, David 2009b: Suchmaschinen. Die Welt als Datenbank, Frankfurt am Main.
Gugerli, David 2010: Data Banking: Computing and Flexibility in Swiss Banks 1960–90, in:

Kyrtsis, Alexandros-Andreas (Ed.): Financial Markets and Organizational Technologies.
System Architectures, Practices and Risks in the Era of Deregulation, Houndmills,
pp. 117–136.

Gugerli, David 2012: Nach uns die Informationsflut. Zur Pathologisierung soziotechnischen
Wandels, in: Nach Feierabend. Zürcher Jahrbuch für Wissensgeschichte, 8, Zurich,
Berlin, pp. 141–147.

Gugerli, David 2005: Computerization Strategies, in: Gugerli, David et al. (Eds.): Transform-
ing the Future: ETH Zurich and the Construction of Modern Switzerland 1855–2005,
Zurich, pp. 301–314.

Gugerli, David and Hannes Mangold 2016: Diskussionsforum – Betriebssysteme und Com-
puterfahndung. Zur Genese einer digitalen Überwachungskultur, in: Geschichte und
Gesellschaft, 42 (1), pp. 144–174.

196

Gugerli, David and Daniela Zetti 2019a: Computergeschichte als Irritationsquelle, in: Marti-
na Heßler and Heike Weber (Eds.): Provokationen der Technikgeschichte. Zum Reflex-
ionszwang historischer Forschung, Paderborn, pp. 193–224.

Gugerli, David and Daniela Zetti 2019b: Computer History – The Pitfalls of Past Futures, in:
Preprints zur Kulturgeschichte der Technik, 33, Zurich.

Haake, Rolf 1965: Einführung in die Informations- und Dokumentationstechnik unter be-
sonderer Berücksichtigung der Lochkarten, ZIID-Schriftenreihe, Leipzig.

Haanstra, J. W. et al. 1983 (1961): Processor Products – Final Report of the SPREAD Task
Group, December 28, 1961, in: Annals of the History of Computing, 5 (1), pp. 6–26.

Haigh, Thomas 2001: Inventing Information Systems: The Systems Men and the Computer
1950–1968, in: Business History Review, 75 (Spring), pp. 15–61.

Haigh, Thomas 2006: Charles W. Bachman Interview: September 25–26, 2004; Tucson, Ari-
zona. Interview conducted for the Special Interest Group on the Management of Data
(SIGMOD) of the Association for Computing Machinery (ACM). Transcript and origi-
nal tapes donated to the Charles Babbage Institute, in: ACM Oral History Interviews,
pp. 1–106.

Haigh, Thomas 2007: “A Veritable Bucket of Facts.” Ursprünge des Datenbankmanagement-
systems, in: Nach Feierabend. Zürcher Jahrbuch für Wissensgeschichte, 3, Zurich,
Berlin, pp. 57–98.

Haigh, Thomas 2010: Dijkstra’s Crisis: The End of Algol and Beginning of Software Engineer-
ing 1968–72, www.tomandmaria.com/Tom/Writing/DijkstrasCrisis_LeidenDRAFT.pdf.

Hamlin, J. E. 1964: A General Description of the National Aeronautics and Space Adminis-
tration Real Time Computing Complex, Proceedings of the 1964 19th ACM National
Conference, pp. 12.201–12.202.

Hauben, Ronda 2001: Die Entstehung des Internet und die Rolle der Regierung, in: Maresch,
Rudolf and Florian Roetzer (Eds.): Cyberhypes. Möglichkeiten und Grenzen des Inter-
net, Frankfurt am Main, pp. 27–52.

Hausammann, Luzius 2008: Der Beginn der Informatisierung im Kanton Zürich. Von der Loch-
kartenanlage im Strassenverkehrsamt zur kantonalen EDV-Stelle (1957–1970), Zurich.

Heide, Lars 2009: Punched-Card Systems and the Early Information Explosion 1880–1945,
Baltimore MD.

Heintz, Bettina 1993: Die Herrschaft der Regel. Zur Grundlagengeschichte des Computers,
Frankfurt am Main.

Henk, Martin 1983: Der IBM-Personal Computer (beantwortet alle Fragen über Aufbau, Ein-
satz und Programmierung, Software und Hardwareerweiterungen), Computer persön-
lich, Munich.

Herken, Rolf 1988: The Universal Turing Machine: A Half-Century Survey, Oxford.
Herold, Horst 1968a: Die elektronische Datenverarbeitung. Möglichkeiten ihres Einsatzes für

die Kriminalstatistik, bei der Gefahrenabwehr und der Erforschung des Sachverhalts.
in: Polizei-Institut Hiltrup (Ed.): 19. Arbeitstagung für Kriminalistik und Kriminologie,
Hiltrup.

Herold, Horst 1968b: Kriminalgeographie – Ermittlung und Untersuchung der Beziehungen
zwischen Raum und Kriminalität, in: Schäfer, Herbert (Ed.): Kriminalistische Akzente,
4, Hamburg, pp. 1–47.

Herold, Horst 1968c: Organisatorische Grundzüge der elektronischen Datenverarbeitung im
Bereich der Polizei. Versuch eines Zukunftsmodells, in: Taschenbuch für Kriminalisten,
18, pp. 240–254.

197

Herold, Horst 1970: Kybernetik und Polizei-Organisation, in: Die Polizei. Zentralorgan für
das Sicherheits- und Ordnungswesen, Polizei-Wissenschaft, -Recht, -Praxis, 61 (2),
pp. 33–37.

Herold, Horst 1985: Rasterfahndung. Eine computerunterstützte Fahndungsform der Polizei,
in: Recht und Politik. Vierteljahreshefte für Rechts- und Verwaltungspolitik, pp. 84–97.

Hey, Anthony J. G. and Gyuri Pápay 2015: The Computing Universe: A Journey Through a
Revolution, New York NY.

Hirzel, H. and K. Käfer 1943: Einführung in das berufliche Rechnen für Schreiner, Zurich.
Hoagland, Albert S. 1976: Magnet Recording Storage, in: IEEE Transactions on Computer,

25 (12), pp. 1283–1288.
Holden, Willard 1979: What Is a Personal Computer?, SIGPC ’79 Editor’s Message, 2, New

York NY.
Hopper, Grace Murray 1952: The Education of a Computer, Proceedings of the 1952 ACM

National Meeting (Pittsburgh), Pittsburgh PA, pp. 243–249.
Humphrey, W. S. 2002: Software Unbundling: A Personal Perspective, in: IEEE Annals of the

History of Computing, 24 (1), pp. 59–63.
Hutchinson, Lee 2012: Going Boldly: Behind the Scenes at NASA’s Hallowed Mission Control

Center. Apollo vet Sy Liebergot Shows Ars How NASA Got Men Safely to the Moon
and Back, Ars Technica.

IBM 1970: Reference Manual IBM 29 Card Punch, Poughkeepsie NY.
International Telegraph and Telephone Consultative Committee 1977: Orange Book, Geneva.
Isaacson, Portia 1978: Personal Computing Position Paper, in: SIGPC Note, 1 (2), pp. 5–9.
Isaacson, Portia et al. 1978: Personal Computing: Problems of the 80’s, in: SIGPC Note, 1

(3), pp. 46–55.
James, S. E. 1981: Evolution of Real-Time Computer Systems for Manned Spaceflight, in:

IBM Journal of Research and Developpement, 25 (5), pp. 417–428.
Jensen, John 1967: How to Pass Computer Programmer Aptitude Tests, New York NY.
Johnson, Clayton 1975: IBM 3850: Mass Storage System, Proceedings of the May 19–22,

1975, National Computer Conference and Exposition, Anaheim CA, pp. 509–514.
Johnson, L. R. 1952: Installation of a Large Electronic Computer, Proceedings of the 1952

ACM meeting (Toronto), New York NY, pp. 77–80.
Johnstone, J. L. 1969: RTOS: Extending OS/360 for Real Time Spaceflight Control, Pro-

ceedings of the May 14–16, 1969, Spring Joint Computer Conference, Boston MA,
pp. 15–27.

Jones, Curtis H. 1970: At Last: Real Computer Power for Decision Makers, in: Harvard Busi-
ness Review, 48 (5), pp. 75–89.

Jones, Steven E. 2016: Roberto Busa, S. J. and the Emergence of Humanities Computing:
The Priest and the Punched Cards, New York NY.

Kahn, R. E. 1972: Resource-Sharing Communication Networks, in: Proceedings IEEE, 60 (11),
pp. 1347–1407.

Kaleth, Hans 1961: Die elektronische Datenverarbeitung. Ein Beitrag zur Automatisierung
der kriminalpolizeilichen Karteiarbeit, BKA-Schriftenreihe, Wiesbaden.

Kaplan, Sidney J. 1968: The Advancing Communication Technology and Computer Commu-
nication Systems, Proceedings of the April 30–May 2, 1968, Spring Joint Computer
Conference, Atlantic City NJ, pp. 119–133.

Katzan, Harry 1977: The IBM 5100 Portable Computer: A Comprehensive Guide for Users and
Programmers, Computer Science Series, New York NY.

198

Katzan, Harry Jr. 1970: Operating Systems Architecture, Proceedings of the May 5–7, 1970,
Spring Joint Computer Conference, Atlantic City NJ, pp. 109–118.

Katzenbach, Nicholas de Belleville 1987: An Overview of Program Trading and its Impact on
Current Market Practices, New York NY.

Kay, Alan et al. 1978: Position Paper on How to Advance from Hobby Computing to Personal
Computing, in: SIGPC Note, 1 (2), pp. 29–31.

Kemeny, John G. and Thomas E. Kurtz 1964: BASIC: A Manual for BASIC: The Elementa-
ry Algebraic Language Designed for Use with the Dartmouth Time Sharing System,
Hanover NH.

Kephart, Jeffrey O. and David M. Chess 2003: The Vision of Autonomic Computing, in: Com-
puter, 36 (1), pp. 41–50.

Kerner, Helmut and Georg Bruckner 1989: Rechnernetze nach ISO-OSI, CCITT, Wolfsgraben.
Kilburn, Tom et al. 1962: The Atlas Supervisor, www.chilton-computing.org.uk/acl/technol��-

ogy/atlas/p019.htm.
King, John Leslie et al. 1997: The Rise and Fall of Netville: The Saga of a Cyberspace Con-

struction Boomtown in the Great Divide, in: Electronic Markets, 7, pp. 3–33.
Klossner, Andrew 1980: A Parallel Between Operating System and Human Government, in:

ACM SIGOPS Operating Systems Review, 14 (2), pp. 28–31.
Kneipp, Sebastian 1880: So sollt ihr leben! Winke und Ratschläge für Gesunde und Kranke

zu einer einfachen, vernünftigen Lebensweise und einer naturgemässen Heilmethode,
Kempten.

Kneipp, Sebastian 1889: Meine Wasser-Kur, Kempten.
Knight, Kenneth E. 1966: Changes in Computer Performance, in: Datamation, 12 (9), pp. 40–

54.
Krajewski, Markus 2002: Zettelwirtschaft. Die Geburt der Kartei aus dem Geiste der Bibli-

othek, Berlin.
Kranz, Gene 2001: Failure Is Not an Option: Mission Control from Mercury to Apollo 13 and

Beyond, New York NY.
Kraushaar, Wolfgang 2000: 1968 als Mythos, Chiffre und Zäsur, Hamburg.
Krige, John (Ed.) 1996: History of CERN, Amsterdam.
Lacan, Jacques 1986 (1948): Das Spiegelstadium als Bildner der Ichfunktion, wie sie uns

in der psychoanalytischen Erfahrung erscheint in: Lacan, Jacques (Ed.): Schriften, 1,
Weinheim, Berlin, pp. 61–70.

Laccabue, Fred 2009: Oral History Interview with Fred Laccabue. Retrieved from the Univer-
sity of Minnesota Digital Conservancy, http://hdl.handle.net/11299/107417.

Landau, Robert M. 1979: Productivity, Information Technology and the Office, Proceedings
of the 2nd Annual International ACM SIGIR Conference on Information Storage and
Retrieval: Information Implications into the Eighties, Dallas TX, pp. 59–63.

Launius, R. D. 2009: Abandoned in Place: Interpreting the US Material Culture of the Moon
Race, in: Public Historian, 31 (3), pp. 9–38.

Lesser, M. L. and J. W. Haanstra 1957: The RAMAC Data-Processing Machine, Proceedings
of the December 10–12, 1956, Eastern Joint Computer Conference: New Develop-
ments in Computers, New York NY, pp. 139–146.

Levine, Stanley L. 1961: The Problem of Heterogeneous Groups in Computer Programmer
Training, Proceedings of the 1961 ACM National Meeting, New York, pp. 131.301–
131.303.

Levy, Steven 2010: Hackers, Sebastopol CA.

http://www.chilton-computing.org.uk/acl/technology/atlas/p019.htm
http://www.chilton-computing.org.uk/acl/technology/atlas/p019.htm

199

Lew, K. H. and C. Jong 1988: Getting There from Here: Mapping from TCP/IP to OSI, in: Data
Communication (August), pp. 161–175.

Licklider, J. C. R. 1960: Man-Computer Symbiosis, in: IRE Transactions on Human Factors in
Electronics, 1 (March), pp. 4–11.

Licklider, J. C. R. 1967a: Dynamic Modeling, in: Wathen-Dunn, Weiant (Ed.): Models for the
Perception of Speech and Visual Form, Cambridge, pp. 11–25.

Licklider, J. C. R. 1967b: Interactive Dynamic Modeling, in: Shapiro, George and Milton Rog-
ers (Eds.): Prospects for Simulation and Simulators of Dynamic Systems, New York
NY, pp. 281–289.

Licklider, J. C. R. 1967c: Interactive Information Processing, in: Tou, Julius T. (Ed.): Computer
and Information Sciences, II, New York NY, pp. 1–13.

Licklider, J. C. R. 1968: Man-Computer Communication, in: Annual Review of Information
Science and Technology, 3, pp. 201–240.

Licklider, J. C. R. and Welden E. Clark 1962: On-Line Man-Computer Communication, New
York NY, p. 113.

Licklider, J. C. R. and R. W. Taylor 1990: In memoriam, J. C. R. Licklider, 1915–1990, in:
http://catalog.hathitrust.org/api/volumes/oclc/22964205.html.

Licklider, J. C. R. et al. 1968: The Computer as a Communication Device, in: Science and
Technology for the Technical Men in Management, 76 (April), pp. 21–31.

Luhmann, Niklas 1966: Recht und Automation in der öffentlichen Verwaltung. Eine ver-
waltungswissenschaftliche Untersuchung, 29, Berlin.

Luhmann, Niklas 1968: Zweckbegriff und Systemrationalität über die Funktion von Zwecken
in sozialen Systemen, Soziale Forschung und Praxis, Tübingen.

Luhmann, Niklas 1993: Gleichzeitigkeit und Synchronisation, in: Luhmann, Niklas (Ed.): Sozi-
ologische Aufklärung. Konstruktivistische Perspektiven, 5, Opladen, pp. 95–130.

Luhmann, Niklas 2007 (1964): Lob der Routine, in: Luhmann, Niklas (Ed.): Politische Planung.
Aufsätze zur Soziologie von Politik und Verwaltung, Wiesbaden, pp. 113–142.

Mahoney, Michael S. 2005: The Histories of Computing(s), in: Interdisciplinary Science Re-
views, 30, pp. 119–135.

Mahoney, Michael S. 2011: Histories of Computing, Cambridge MA.
Mangold, Hannes 2017: Fahndung nach dem Raster. Informationsverarbeitung bei der bun-

desdeutschen Kriminalpolizei, 1965–1984, Interferenzen. Zur Kulturgeschichte der
Technik, 23, Zurich.

March, James Gardner et al. 1958: Organizations, New York NY, London.
Marill, Thomas et al. 1963: DATA-DIAL: Two-Way Communication with Computers from Or-

dinary Dial Telephones, in: Communications of the ACM, 6, pp. 622–624.
Martin, William L. 1954: A Merchandise Control System, Proceedings of the February 11–12,

1954, Western Computer Conference. Trends in Computers. Automatic Control and
Data Processing, Los Angeles CA, pp. 184–191.

Mayer, Joh. Eugen 1908: Das Rechnen in der Technik und seine Hilfsmittel. Rechenschieber,
Rechentafeln, Rechenmaschinen usw., Sammlung Göschen, Leipzig.

Mayer, Paul A. 2003: Computer Media and Communication: A Reader, Oxford.
McCarthy, John 1959: A Time Sharing Operator Program for Our Projected IBM 709,

www-formal.stanford.edu/jmc/history/timesharing-memo/timesharing-memo.html.
McCarthy, John 1983: Reminiscences on the History of Time Sharing, www-formal.stanford.

edu/jmc/history/timesharing/timesharing.html.

http://www-formal.stanford.edu/jmc/history/timesharing-memo/timesharing-memo
http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html
http://www-formal.stanford.edu/jmc/history/timesharing/timesharing.html

200

McPherson, J. L. and S. N. Alexander 1951: Performance of the Census UNIVAC System,
Proceedings of the December 10–12, 1951, Joint AIEE-IRE Computer Conference: Re-
view of Electronic Digital Computers, Philadelphia PA, pp. 16–22.

McPherson, James L. 1953: Commercial Applications: The Implication of Census Experience,
Proceedings of the February 4–6, 1953, Western Computer Conference, Los Angeles
CA, pp. 49–53.

Mendicino, Samuel F. 1972: Octopus: The Lawrence Radiation Laboratory Network, in: Rus-
tin, Randall (Ed.): Computer Networks, Englewood Cliffs NJ, pp. 95–100.

Metcalfe, Robert M. and David R. Boggs 1976: Ethernet: Distributed Packet Switching for
Local Computer Networks, in: Communications of the ACM, 19, pp. 395–404.

Meyer, Caroline 2008: Eidophor. Ein Fernseh-Grossbildprojektionssystem zwischen Nut
zungsvisionen und Anwendungsrealitäten 1939–1999, Zurich.

Miller, Irvin M. 1969: Computer Graphics for Decision Making, in: Harvard Business Review,
47 (6), pp. 121–132.

Miller, Leslie Jill 1981: The ISO Reference Model of Open Systems Interconnection: A First
Tutorial, Proceedings of the ACM 1981 Conference, pp. 283–288.

Mindell, David A. 2002: Between Human and Machine: Feedback, Control, and Computing
Before Cybernetics, Johns Hopkins Studies in the History of Technology, Baltimore
MD.

Mindell, David A. 2008: Digital Apollo: Human and Machine in Spaceflight, Cambridge MA.
Misa, Thomas J. 2017: Communities of Computing: Computer Science and Society in the

ACM, San Rafael CA.
MITS 1975: Building Your Own Computer Won’t Be a Piece of Cake, in: Radio Electronics

(5), p. 25.
Moore, Gordon E. 1965: Cramming More Components onto Integrated Circuits, in: Electron-

ics, 38 (8), pp. 114–117.
Morgan, Howard Lee 1976: Office Automation Project: A Research Perspective, Proceedings

of the June 7–10, 1976, National Computer Conference and Exposition, New York NY,
pp. 605–610.

Morton, Michael S. and Andrew M. McCosh 1968: Terminal Costing for Better Decisions, in:
Harvard Business Review, 46 (3), pp. 147–156.

NASA 1965: Composite Air-to-Ground and Onboard Voice Tape Transcription of the GT-4
Mission, NASA Program Gemini, Working Papers No. 5035, Houston TX.

National Research Council 1999: Funding a Revolution: Government Support for Computing
Research, Washington DC.

Nelson, Theodore Holm 1987: Computer Lib/Dream Machines, Redmond WA.
Nelson, Theodore Holm 1967: Getting It Out of Our System, in: Schecter, George (Ed.): Infor-

mation Retrieval: A Critical View. Based on a Colloquium, Philadelphia PA, May 12–13,
1966, Washington DC, pp. 191–210.

Neu, Walter and Albert Kündig 1968: Project for a Digital Telephone Network, in: IEEE Trans-
actions on Communication Technology, COM-16 (5) (October 1968), pp. 633–648.

	Neukom, Hans 2009: Ubisco and CDC: Analysis of a Failure, in: IEEE Annals of the History of
Computing (April-June), pp. 31–43.

Neumann, John von 1945: First Draft of a Report on the EDVAC, in: Randell, Brian (Ed.):
The Origins of Digital Computers: Selected Papers, Berlin, Heidelberg, New York NY,
pp. 355–364.

201

Noll, John and Walt Scacchi 1991: Integrating Diverse Information Repositories: A Distribut-
ed Hypertext Approach, in: IEEE Computer (December), pp. 38–45.

Norman, Jeremy M. 2005: From Gutenberg to the Internet: A Sourcebook on the History of
Information Technology, Novato CA.

Owens, Larry 1986: Vannevar Bush and the Differential Analyzer: The Text and Context of an
Early Computer, in: Technology and Culture, pp. 63–95.

Palormo, Jean M. 1967: The Computer Programmer Aptitude Battery: A Description and
Discussion, Proceedings of the Fifth SIGCPR Conference on Computer Personnel Re-
search, College Park MD, pp. 57–63.

Pelaez, E. 1999: The Stored-Program Computer: Two Conceptions, in: Social Studies of Sci-
ence, 29, pp. 359–389.

Penny, Samuel J. et al. 1970: Design of a Very Large Storage System, Proceedings of the
November 17–19, 1970, Fall Joint Computer Conference, Houston TX, pp. 45–51.

Philco 1967: Familiarization Manual Mission Control Center Houston PHO-FAM001. Replac-
es PHO-FAM001 published 22 November 1965, Houston TX.

Pias, Claus 2015: Friedrich Kittler und der “Missbrauch von Heeresgerät,” in: Merkur, 69
(791), pp. 31–44.

Poole, P. C. and W. M. Waite 1969: Machine Independent Software, Proceedings of the Sec-
ond Symposium on Operating Systems Principles, Princeton NJ, pp. 19–24.

Pratschke, Margarete 2011: Why History Matters: Visual Innovation and the Role of Image
Theory in HCI, in: Marcus, Aaron (Ed.): Design, User Experience, and Usability, Heidel-
berg, pp. 277–284.

Pugh, Emerson W. et al. 1991: IBM’s 360 and Early 370 Systems, Cambridge MA.
Raskin, Jef 1976: Personal Computers: A Bit of Wheat Amongst the Chaff, in: Dr. Dobb’s

Journal of Computer Calisthenics & Orthodontia (September 1976), pp. 15–17.
Raskin, Jef 1987: The Hype in Hypertext: A Critique, Proceedings of the ACM Conference on

Hypertext, Chapel Hill NC, pp. 325–330.
RCA 1965: RCA Spectra 70, www.computerhistory.org/brochures/full_record.php?iid=�-

doc-4372956eb9810.
Redmond, Kent C. and Thomas M. Smith 2000: From Whirlwind to Mitre: The R&D Story of

the SAGE Air Defense Computer, Cambridge MA.
Reed, Harry L. 1952: Firing Table Computations on the ENIAC, Proceedings of the 1952 ACM

National Meeting (Pittsburgh), New York NY, pp. 103–106.
Ridenour, Louis N. 1955: Storage and Retrieval of Information, Papers and Discussions

presented at the November 7–9, 1955, Eastern Joint AIEE-IRE Computer Conference.
Computers in Business and Industrial Systems, Boston MA, pp. 79–82.

Ridgway, Richard K. 1952: Compiling Routines, Proceedings of the 1952 ACM National
Meeting (Toronto), New York NY, pp. 1–5.

Roberts, H. Edward and William Yates 1975a: ALTAIR 8800. The Most Powerful Minicom-
puter Project Ever Presented – Can be Built for under $400, in: Popular Electronics, 7
(1), pp. 33–38.

Roberts, H. Edward and William Yates 1975b: Build the Altair 8800 Minicomputer (Part Two),
in: Popular Electronics, 7 (2), pp. 56–58.

Roberts, L. G. 1978: The Evolution of Packet Switching, in: Proceedings IEEE, 66 (11), p. 1307.
Roberts, Lawrence G. and Barry D. Wessler 1970: Computer Network Development to

Achieve Resource Sharing, Proceeding AFIPS (Spring) Proceedings of the May 5–7,
1970, Spring Joint Computer Conference, pp. 543–549.

https://www.computerhistory.org/brochures/doc-4372956eb9810/
https://www.computerhistory.org/brochures/doc-4372956eb9810/

202

Rodgers, Daniel T. 2011: Age of Fracture, Cambridge MA.
Rogge, Peter G. 1997: Die Dynamik des Wandels. Schweizerischer Bankverein 1862–1997.

Das fünfte Vierteljahrhundert, Basel.
Rosen, Philip (Ed.) 1986: Narrative, Apparatus, Ideology: A Film Theory Reader, New York NY.
Rosenfelder, Andreas 2003: Medien auf dem Mond. Zur Reichweite des Weltraumfern-

sehens, in: Schneider, Irmela et al. (Eds.): Medienkultur der 60er Jahre. Diskurs-
geschichte der Medien nach 1945, 2, Wiesbaden, pp. 17–33.

Rosenthal, David S. H. et al. 2012: The Economics of Long-Term Digital Storage. In: Duranti,
Luciana and Elizabeth Shaffer (Eds.): The Memory of the World in the Digital Age:
Digitization and Preservation, Vancouver, pp. 513–528.

Rutishauser, Heinz 1952: Automatische Rechenplanfertigung bei programmgesteuerten Re-
chenmaschinen, Basel.

Rutishauser, Heinz 1956: Automatische Rechenplanfertigung bei programmgesteuerten Re-
chenmaschinen, Basel.

Rutishauser, Heinz et al. 1951: Programmgesteuerte digitale Rechengeräte (elektronische
Rechenmaschinen), Mitteilungen aus dem Institut für angewandte Mathematik an der
Eidgenössischen Technischen Hochschule in Zürich, Basel.

Sachs, Wolfgang 1994: Satellitenblick. Die Ikone vom blauen Planeten und ihre Folgen für
die Wissenschaft, in: Braun, Ingo and Bernward Joerges (Eds.): Technik ohne Grenzen,
Frankfurt am Main, pp. 305–346.

Sackman, Harold 1968: Man-Computer Communication. Experimental Investigation of User
Effectiveness, Proceedings of the Sixth SIGCPR Conference on Computer Personnel
Research, Cambridge MA, pp. 93–105.

Sale, Anthony E. et al. 2000: The Colossus of Bletchley Park: The German Cipher System, in:
Rojas, Raul and Ulf Hashagen (Eds.): The First Computers: History and Architectures,
Cambridge MA, pp. 351–364.

Science News-Letter 1961: Single Computers May Serve Many Companies, in: The Science
News-Letter, 80 (4), p. 52.

Scott, Linda M. 1991: “For the Rest of Us”: A Reader-Oriented Interpretation of Apple’s
“1984” Commercial, in: Journal of Popular Culture, 25 (1), pp. 67–81.

Scott, S. V. et al. 2008: The Impact on Bank Performance of the Diffusion of a Financial
Innovation: An Analysis of SWIFT Adoption, Paris.

Sheldon, John W. and Liston Tatum 1951: The IBM Card-Programmed Electronic Calculator,
Papers and Discussions Presented at the Dec. 10–12, 1951, Joint AIEE-IRE Computer
Conference. Review of Electronic Digital Computers, Philadelphia PA, pp. 30–36.

Sibley, Edgar H. 1975: On the Equivalences of Data Based Systems, Proceedings of the 1974
ACM SIGFIDET (now SIGMOD) Workshop on Data Description, Access and Control:
Data Models: Data-Structure-Set versus Relational, Ann Arbor, Michigan, May 1–3,
pp. 43–76.

Siebrecht, Michael 1995: Rasterfahndung. Eine EDV-gestützte Masssenfahndungsmethode
im Spannungsfeld zwischen einer effektiven Strafverfolgung und dem Recht auf infor-
mationelle Selbstbestimmung, Berlin.

Simon, Herbert A. 1960: The Corporation: Will It Be Managed by Machines?, in: Anshen, M.
and G. L. Bach (Eds.): Management and Corporations, New York NY, pp. 17–55.

Simon, Herbert A. 1962: The Architecture of Complexity in: Proceedings of the American
Philosophical Society, 106 (6), pp. 467–482.

203

Simon, Herbert A. 1976 (1946): Administrative Behavior: A Study of Decision-Making Pro-
cesses in Administrative Organization, New York NY.

Simon, Herbert A. 1977 (1960): The New Science of Management Decision, Englewood
Cliffs NJ.

Simon, Jürgen and Jürgen Taeger 1981: Rasterfahndung. Entwicklung, Inhalt und Grenzen
einer kriminalpolizeilichen Untersuchungsmethode, Baden-Baden.

Söll, Wolfgang and Jörg-Hagen Kirchner 1978: Digitale Speicher. Informationsspeicher in
der Technik und im Gedächtnis, Kamprath-Reihe kurz und bündig Technik, Würzburg.

Solomon, Martin B. 1966: Economies of Scale and the IBM System/360, in: Communications
of the ACM, 9 (6), pp. 435–440.

Spitzer, Manfred 2012: Digitale Demenz. Wie wir uns und unsere Kinder um den Verstand
bringen, Munich.

Sprenger, Florian 2015: The Politics of Micro-Decisions: Snowden, Net Neutrality, and Inter-
net Architectures, trans. Valentine A. Pakis, Digital Cultures Series, Lüneburg.

Stadlin, Christofer 2010: Actuarial Practice, Probabilistic Thinking and Actuarial Science in
Private Casualty Insurance, in: Pearson, Robin (Ed.): The Development of International
Insurance, London, pp. 37–62.

Stahel, Adolf 1950: Rechnen für Mechaniker, Zurich.
Steadman, Howard L. and George R. Sugar 1968: Some Ways of Providing Communica-

tion Facilities for Time-Shared Computing, Proceedings of the April 30–May 2, 1968,
Spring Joint Computer Conference, Atlantic City NJ, pp. 23–29.

Stern, Nancy 1981: From ENIAC to UNIVA: An Appraisal of the Eckert-Mauchly Computers,
Bedford MA.

Stiefel, Eduard 1954: Rechenautomaten im Dienste der Technik. Erfahrungen mit dem
Zuse-Rechenautomaten Z4, Arbeitsgemeinschaft für Forschung des Landes Nor-
drhein-Westfalen, 45, Cologne, pp. 29–65.

Stubenrecht, Alfred 1960: Lochkarten im Klein- und Mittelbetrieb, Wie-Buchreihe, Düssel-
dorf.

Studienzentrum für Administrative Automatisierung 1966: Neue Berufsbilder in der Elektro-
nischen Datenverarbeitung, 10, Munich, Vienna.

Sumner, Frank H. et al. 2000: The Atlas Computer, in: Rojas, Raul and Ulf Hashagen (Eds.):
The First Computers: History and Architectures, Cambridge MA, pp. 387–396.

Tanenbaum, Andrew S. 1997: Computer-Netzwerke, Munich, London, Mexico.
Tanenbaum, Andrew S. 2014: Modern Operating Systems, Essex.
Teager, Herbert and John McCarthy 1959: Time-Shared Program Testing, Proceedings of the

14th National Meeting of the ACM, New York NY, pp. 1–2.
Tillman, Matthew A. and David C.-C. Yen 1990: SNA and OSI. Three Strategies for Intercon-

nection, in: Communications of the ACM, 33 (2), pp. 214–224.
Tobler, Beatrice 2001: Z4 und ERMETH: Maschinen im Dienste des wissenschaftlichen

Rechnens, in: Tobler, Beatrice and Sandra Sunier (Eds.): Loading History. Computer
geschichten aus der Schweiz, 1, Zurich, pp. 12–21.

Tomayko, James E. 1988: Computers in Spaceflight: The NASA Experience, https://archive.
org/details/nasa_techdoc_19880069935.

Tomeski, Edward Alexander 1970: The Computer Revolution: The Executive and the New
Information Technology, New York NY.

Trost, Stanley R. and Wolfgang Dederichs 1983: Programmsammlung zum IBM Personal
Computer, Der IBM Personal Computer, Düsseldorf.

204

Turing, Alan M. 1952: The Chemical Basis of Morphogenesis, in: Philosophical Transactions
of the Royal Society of London. Series B, Biological Sciences, 237 (641), pp. 37–72.

Van der Spiegel, Jan et al. 2000: The ENIAC: History, Operation, and Reconstruction in VSLI,
in: Rojas, Raul and Ulf Hashagen (Eds.): The First Computers: History and Architec-
tures, Cambridge MA, pp. 121–178.

Vissmann, Cornelia 2001: Akten. Medientechnik und Recht, Frankfurt am Main.
Voelcker, John 1988: The PDP-8: The First “Personal” Computer for Engineers and Scientists

Ushered in the Minicomputer Era, in: IEEE Spectrum, 25 (11), pp. 86–92.
Vyssotsky, Victor A. and Fernando José Corbató 1965: Structure of the Multics Supervisor,

Proceedings Fall Joint Computer Conference, pp. 203–212.
Waldrop, M. Mitchell and J. C. R. Licklider 2002: The Dream Machine: J. C. R. Licklider and

the Revolution That Made Computing Personal, New York NY.
Walker, Janet H. 1987: Document Examiner: Delivery Interface for Hypertext Documents,

Proceedings of the ACM Conference on Hypertext, Chapel Hill NC, pp. 307–323.
Wanner, Stephan 1985: Die negative Rasterfahndung. Eine moderne und umstrittene Meth-

ode der repressiven Verbrechensbekämpfung, Rechtswissenschaftliche Forschung und
Entwicklung, Munich.

Warren, Jim 1977: Personal Computing: An Overview for Computer Professionals, Proceed-
ings of the June 13–16, 1977, National Computer Conference, Dallas TX, pp. 493–498.

Weiderman, Nelson H. 1979: Personalizing Large Computers, in: SIGPC Note, 1 (4), pp. 33–
35.

Welsh, H. F. and H. Lukoff 1952: The Uniservo-Tape Reader and Recorder, Joint AIEE-IEE-
ACM Computer Conference, New York NY, pp. 47–53.

Wexelblat, Richard L. 1981: History of Programming Languages [Proceedings of] the ACM
SIGPLAN History of Programming Languages Conference, [Los Angeles CA], June 1–3
1978, ACM Monographs Series, New York NY.

Whisler, Thomas L. 1970: Information Technology and Organizational Change, Belmont CA.
Wijngaarden, A. et al. 1969: Report on the Algorithmic Language ALGOL 68, in: Numerische

Mathematik, 14, pp. 79–218.
Willoughby, Theodore C. 1971: Computer Programmer Aptitude Battery: Validation Study, in:

SIGCPR Computing Personnel, 2 (3), pp. 6–9.
Yates, JoAnne 2005: Structuring the Information Age: Life Insurance and Technology in the

Twentieth Century, Baltimore MD.
Yates, JoAnne et al. 2001: Information Technology and Organizational Transformation: His-

tory, Rhetoric and Practice, Thousand Oaks CA.
Zentralinstitut für Information und Dokumentation 1967: Erfahrungsberichte zur Anwendung

von Lochkarten in Informationseinrichtungen, ZIID-Schriftenreihe, Berlin.
Zetti, Daniela 2008: Personal und Computer. Die Automation des Postcheckdienstes mit

Computern, ein Projekt der Schweizer PTT, in: Preprints zur Kulturgeschichte der Tech-
nik, 22, Zurich.

Zetti, Daniela 2009: Die Erschliessung der Rechenanlage. Computer im Postcheckdienst,
1964–1974, in: Traverse. Zeitschrift für Geschichte (3), pp. 88–102.

Zetti, Daniela 2014: Das Programm der elektronischen Vielfalt. Fernsehen als Gemeinplatz
in der BRD, 1950–1980, Zurich.

Zuse, Konrad 1936: Verfahren zur selbsttätigen Durchführung von Rechnungen mit Hilfe von
Rechenmaschinen, in: ZuP, pp. 1–7.

205

Zuse, Konrad 1948: Über Theorie und Anwendungen logistischer Rechengeräte, http://zuse.
zib.de, pp. 1–38.

Zuse, Konrad 1980: Installation of the German Computer Z4 in Zurich in 1950, in: IEEE Annals
of the History of Computing, 2 (3), pp. 239–241.

http://zuse.zib.de/
http://zuse.zib.de/

	Contents
	1	Switching on
	2 Computing, programming, and formatting
	3	Sharing and operating
	4	Synchronizing
	5	Production and setting up
	6	Connecting, differentiating, and storing
	7	Switching off
	Acknowledgments
	Postscript to the English edition
	Photo credits
	Notes
	Bibliography

	Schaltfläche 4:
	Schaltfläche 5:
	Schaltfläche 6:
	Schaltfläche 3:
	Seite 5: Off
	Seite 91: Off
	Seite 112: Off
	Seite 133: Off
	Seite 154: Off
	Seite 175: Off
	Seite 196: Off
	Seite 217: Off
	Seite 238: Off
	Seite 259: Off
	Seite 2710: Off
	Seite 2911: Off
	Seite 3112: Off
	Seite 3313: Off
	Seite 3514: Off
	Seite 3715: Off
	Seite 3916: Off
	Seite 4117: Off
	Seite 4318: Off
	Seite 4519: Off
	Seite 4720: Off
	Seite 4921: Off
	Seite 5122: Off
	Seite 5323: Off
	Seite 5524: Off
	Seite 5725: Off
	Seite 5926: Off
	Seite 6127: Off
	Seite 6328: Off
	Seite 6529: Off
	Seite 6730: Off
	Seite 6931: Off
	Seite 7132: Off
	Seite 7333: Off
	Seite 7534: Off
	Seite 7735: Off
	Seite 7936: Off
	Seite 8137: Off
	Seite 8338: Off
	Seite 8539: Off
	Seite 8740: Off
	Seite 8941: Off
	Seite 9142: Off
	Seite 9343: Off
	Seite 9544: Off
	Seite 9745: Off
	Seite 9946: Off
	Seite 10147: Off
	Seite 10348: Off
	Seite 10549: Off
	Seite 10750: Off
	Seite 10951: Off
	Seite 11152: Off
	Seite 11353: Off
	Seite 11554: Off
	Seite 11755: Off
	Seite 11956: Off
	Seite 12157: Off
	Seite 12358: Off
	Seite 12559: Off
	Seite 12760: Off
	Seite 12961: Off
	Seite 13162: Off
	Seite 13363: Off
	Seite 13564: Off
	Seite 13765: Off
	Seite 13966: Off
	Seite 14167: Off
	Seite 14368: Off
	Seite 14569: Off
	Seite 14770: Off
	Seite 14971: Off
	Seite 15172: Off
	Seite 15373: Off
	Seite 15574: Off
	Seite 15775: Off
	Seite 15976: Off
	Seite 16177: Off
	Seite 16378: Off
	Seite 16579: Off
	Seite 16780: Off
	Seite 16981: Off
	Seite 17182: Off
	Seite 17383: Off
	Seite 17584: Off
	Seite 17785: Off
	Seite 17986: Off
	Seite 18187: Off
	Seite 18388: Off
	Seite 18589: Off
	Seite 18790: Off
	Seite 18991: Off
	Seite 19192: Off
	Seite 19393: Off
	Seite 19594: Off
	Seite 19795: Off
	Seite 19996: Off
	Seite 20197: Off
	Seite 20398: Off
	Seite 20599: Off

	Schaltfläche 8:
	Schaltfläche 9:
	Schaltfläche 10:
	Schaltfläche 2:
	Seite 10: Off
	Seite 121: Off
	Seite 142: Off
	Seite 163: Off
	Seite 204: Off
	Seite 225: Off
	Seite 246: Off
	Seite 267: Off
	Seite 288: Off
	Seite 309: Off
	Seite 3210: Off
	Seite 3411: Off
	Seite 3612: Off
	Seite 3813: Off
	Seite 4014: Off
	Seite 4215: Off
	Seite 4416: Off
	Seite 4617: Off
	Seite 4818: Off
	Seite 5019: Off
	Seite 5220: Off
	Seite 5621: Off
	Seite 5822: Off
	Seite 6023: Off
	Seite 6224: Off
	Seite 6425: Off
	Seite 6626: Off
	Seite 6827: Off
	Seite 7028: Off
	Seite 7229: Off
	Seite 7430: Off
	Seite 7631: Off
	Seite 8032: Off
	Seite 8233: Off
	Seite 8434: Off
	Seite 8635: Off
	Seite 8836: Off
	Seite 9037: Off
	Seite 9238: Off
	Seite 9439: Off
	Seite 9640: Off
	Seite 9841: Off
	Seite 10042: Off
	Seite 10243: Off
	Seite 10444: Off
	Seite 10645: Off
	Seite 10846: Off
	Seite 11047: Off
	Seite 11248: Off
	Seite 11449: Off
	Seite 11650: Off
	Seite 11851: Off
	Seite 12052: Off
	Seite 12253: Off
	Seite 12454: Off
	Seite 12655: Off
	Seite 12856: Off
	Seite 13057: Off
	Seite 13258: Off
	Seite 13459: Off
	Seite 13660: Off
	Seite 13861: Off
	Seite 14062: Off
	Seite 14263: Off
	Seite 14464: Off
	Seite 14665: Off
	Seite 14866: Off
	Seite 15067: Off
	Seite 15268: Off
	Seite 15469: Off
	Seite 15670: Off
	Seite 15871: Off
	Seite 16072: Off
	Seite 16273: Off
	Seite 16474: Off
	Seite 16675: Off
	Seite 16876: Off
	Seite 17277: Off
	Seite 17478: Off
	Seite 17679: Off
	Seite 17880: Off
	Seite 18081: Off
	Seite 18282: Off
	Seite 18483: Off
	Seite 18684: Off
	Seite 18885: Off
	Seite 19086: Off
	Seite 19287: Off
	Seite 19488: Off
	Seite 19689: Off
	Seite 19890: Off
	Seite 20091: Off
	Seite 20292: Off
	Seite 20493: Off

	Schaltfläche 12:
	Schaltfläche 14:
	Schaltfläche 16:
	Schaltfläche 18:

